Skip to main content

Operator Domains and SUSY Breaking in a Model of SUSYQM with a Singular Potential

  • Conference paper
  • First Online:
Spectral Analysis of Quantum Hamiltonians

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 224))

  • 761 Accesses

Abstract

The self-adjoint extension of the symmetric supercharges and Hamiltonian of a model of Supersymmetric Quantum Mechanics on the half-line, for the case of a singular superpotential, is analyzed.Th e compatibility of the domains of definition of the different operators and the possibility of effectively implement the graded superalgebra in a dense subspace of the Hilbert space is considered.As a consequence, conditions for SUSY breaking in this model are established.

Mathematics Subject Classification (2010). 81Q10, 34L40, 35A20, 34L05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y.A Gel’fand and E.P. Likhtman, JETP Lett. 13 (1971) 323.

    Google Scholar 

  2. P. Ramond, Phys. Rev. D3 (1971) 2415.

    MathSciNet  Google Scholar 

  3. A. Neveu and J. Schwarz, Nucl. Phys. 31 (1971) 86.

    Article  Google Scholar 

  4. D. Volkov and V. Akulov, Phys. Lett. B46 (1973) 109.

    Google Scholar 

  5. J. Wess and B. Zumino, Nucl. Phys. 70 (1974) 39.

    Article  MathSciNet  Google Scholar 

  6. P. Fayet and S. Ferrara, Phys. Rep. 32 (1977) 249.

    Article  MathSciNet  Google Scholar 

  7. M.F. Sohnius, Phys. Rep. 128 (1985) 39.

    Article  MathSciNet  Google Scholar 

  8. E. Witten, Nucl. Phys. B188 (1981) 513; ibid B202 (1982) 253.

    Google Scholar 

  9. P. Salomonson and J.W. van Holten, Nucl. Phys. B196 (1982) 509.

    Article  Google Scholar 

  10. F. Cooper and B. Freedman, Ann. Phys. 146 (1983) 262.

    Article  MathSciNet  Google Scholar 

  11. C. Bender, F. Cooper and A. Das, Phys. Rev. D28 (1983) 1473.

    Google Scholar 

  12. A. Jevicki and J. Rodrigues, Physics Letters B146 (1984) 55.

    MathSciNet  Google Scholar 

  13. J. Casahorran and S. Nam, Int. Jour. Mod. Phys. A6 (1991) 2729; J. Casahorran, Phys. Lett. B156 (1991) 1925: P. Roy, R. Roychoudhury and Y.P. Varshni, Jour. Phys. A21 (1988) 3673.

    Google Scholar 

  14. T. Imbo and U. Sukhatme, Am. Jour. Phys. 52 (1984) 140.

    Article  Google Scholar 

  15. P. Roy and R. Roychoudhury, Phys. Rev. D32 (1985) 1597.

    MathSciNet  Google Scholar 

  16. P. Panigrahi and U. Sukhatme, Phys. Lett. A178 (1993) 251.

    MathSciNet  Google Scholar 

  17. F. Cooper, A. Khare and U. Sukhatme, Phus. Rep. 251 (1995) 267.

    Article  MathSciNet  Google Scholar 

  18. L. Lathouwers, Journal of Mathematical Physics 16 (1975) 1393.

    Article  MathSciNet  Google Scholar 

  19. Ashok Das and Sergio A. Pernice, Nuclear Physics B561 (1999) 357-384; Comment on ’Supersymmetry in the half oscillator: Revisited’, (2002) hep-th/0207112

    Google Scholar 

  20. H. Falomir and P.A.G. Pisani, Journal of Physics A38 (2005) 4665.

    Article  MathSciNet  Google Scholar 

  21. Methods of Modern Mathematical Physics, Vol. I—II. M. Reed and B. Simon. Academic Press, New York (1980).

    Google Scholar 

  22. T. Uchino and I, Tsutsui, Nucl. Phys. B662 (2003) 447.

    Article  MathSciNet  Google Scholar 

  23. T. Cheon, T. Fulop and I. Tsutsui, Ann. Phys. 294 (2001) 1.

    Article  MathSciNet  MATH  Google Scholar 

  24. I. Tsutsui, T. Fulop and T. Cheon, J. Phys. Soc. Jpn. 69 (2000) 3473.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Nagasawa, M. Sakamoto and K. Takenaga, Phys. Lett. B562 (2003) 358.

    MathSciNet  Google Scholar 

  26. T. Allen, Nucl. Phys. B360 (1991) 409.

    Article  Google Scholar 

  27. H. Falomir and P.A.G. Pisani, Journal of Physics A34, (2001) 4143.

    Article  MathSciNet  Google Scholar 

  28. Francisco Correa, Horacio Falomir, Vit Jakubsky and Mikhail S. Plyushchay, Journal of Physics A43, 075202 (2010).

    Article  MathSciNet  Google Scholar 

  29. Francisco Correa, Horacio Falomir, Vit Jakubsky and Mikhail S. Plyushchay, Annals of Physics 325, 2653—2667 (2010).

    Google Scholar 

  30. See Theorem X.25 on page 180 of [21].

    Google Scholar 

  31. Handbook of Mathematical Functions. M. Abramowitz and I. Stegun, editors. Dover Publications, New York (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Falomir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this paper

Cite this paper

Falomir, H., Pisani, P.A.G. (2012). Operator Domains and SUSY Breaking in a Model of SUSYQM with a Singular Potential. In: Benguria, R., Friedman, E., Mantoiu, M. (eds) Spectral Analysis of Quantum Hamiltonians. Operator Theory: Advances and Applications, vol 224. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0414-1_7

Download citation

Publish with us

Policies and ethics