Skip to main content

On Limiting Eigenvalue Distribution Theorems in Semiclassical Analysis

  • Conference paper
  • First Online:

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 224))

Abstract

We give a detailed proof of limiting eigenvalue distribution theorems (LEDT) for eigenvalue clusters associated to suitable bounded perturbations of the spherical Laplacian on Sn and the hydrogen atom Hamiltonian. In order to show the structure of the proof of those theorems, we introduce a LEDT for suitable bounded perturbations of the k-dimensional harmonic oscillator.

Mathematics Subject Classification (2010). 81Q20, 35P20, 44A12, 81R30.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avron, J.; Herbst, I.; Simon, B. Schrödinger operators with magnetic fields. I. General interactions. Duke Math. J. 45 (1978), no. 4, 847-883.

    MathSciNet  MATH  Google Scholar 

  2. Avron, J.E.; Herbst, I.W.; Simon, B. Schrödinger operators with magnetic fields. III. Atoms in homogeneous magnetic field. Comm. Math. Phys. 79 (1981), no. 4, 529-572.

    MathSciNet  MATH  Google Scholar 

  3. Bander M. and Itzykson C. Group theory and the hydrogen atom (I). Reviews of Modern Physics. Volume 38, number 3, April (1966), 330-345,

    Google Scholar 

  4. Bargmann, V. On a Hilbert Space of Analytic Functions and an Associated Integral Transform. Part I. Comm. on Pure and Appl. Math., 14 (1961), 187-214.

    Article  MathSciNet  MATH  Google Scholar 

  5. De Oliveira, C.R. Intermediate Spectral Theory and Quantum Dynamics. Birk- häuser, Progress in Mathematical Physics, 54, (2009).

    Google Scholar 

  6. Fock, V.A. Zur Theorie des Wasserstoffatoms. Z. Phys., 98, (1935), 145-154.

    Article  Google Scholar 

  7. Guillemin, V. and Sternberg, S. On the spectra of commuting pseudodifferential operators: recent work of Kac-Spencer, Weinstein and others. Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977). Lecture Notes in Pure and Appl. Math., 48, Dekker, New York, (1979), 149-165.

    Google Scholar 

  8. Guillemin, Victor. Band asymptotics in two dimensions. Adv. in Math. 42 (1981), no. 3, 248-282.

    Article  MathSciNet  MATH  Google Scholar 

  9. Guillemin, V.; Uribe, A.; and Wang, Z. Band invariants for perturbations of the harmonic oscillator, preprint. September, 2011.

    Google Scholar 

  10. Hall, B.C. Holomorphic methods in analysis and mathematical physics. First Summer School in Analysis and Mathematical Physics (Cuernavaca Morelos, 1998). Con- temp. Math., 260, Amer. Math. Soc., Providence, RI, (2000), 1-59.

    Google Scholar 

  11. Helffer, B. and Robert, D. Puits de potentiel généralisés et asymptotique semi- classique. Ann. Inst. H. Poincaré Phys. Théor. 41 (1984), no. 3, 291-331.

    MathSciNet  MATH  Google Scholar 

  12. Herbst, I.W. Dilation analyticity in constant electric field. I. The two body problem. Comm. Math. Phys. 64 (1979), no. 3, 279-298.

    MathSciNet  MATH  Google Scholar 

  13. Hislop, P.D., Sigal, I.M. Introduction to spectral theory. With applications to Schrodinger operators. Applied Mathematical Sciences, 113. Springer Verlag, New York, (1996).

    Google Scholar 

  14. Hislop P. and Villegas-Blas C. Semiclassical Szego limit of resonance clusters for the hydrogen atom Stark Hamiltonian. Asymptotic Analysis, 2011, to be published.

    Google Scholar 

  15. Hörmander, L. The Analysis of Linear Partial Differential Operators. Vol. I (Distribution Theory and Fourier Analysis). Springer Verlag, second edition, (1990).

    Google Scholar 

  16. Hörmander, L. The Analysis of Linear Partial Differential Operators. Vol. III (Pseudo-Differential Operators). Springer Verlag, second edition, (1990).

    Google Scholar 

  17. Kato, T. Perturbation Theory for Linear Operators. Classics in Mathematics. Springer Verlag, (1995). Reprinted of the 1980 edition.

    Google Scholar 

  18. Klauder J.R. and Skagerstam B.S. Coherent States: Applications in Physics and Mathematical Physics. Singapore: World Scientific, (1985).

    MATH  Google Scholar 

  19. Martinez, A. An Introduction to Semiclassical and Microlocal Analysis. SpringerVerlag, (2002).

    Google Scholar 

  20. Moser, J. Regularization of Kepler’s problem and the averaging method on a manifold. Comm. Pure Appl. Math. 23 (1970), 609-636.

    Article  MathSciNet  MATH  Google Scholar 

  21. Muller, C. Spherical Harmonics. Lecture Notes in Mathematics 17. Springer Verlag, (1966).

    Google Scholar 

  22. Pushnitski, A.; Raikov G. and Villegas-Blas, C. Asymptotic Density of Eigenvalue Clusters for the Perturbed Landau Hamiltonian. October, (2011).

    Google Scholar 

  23. Thomas, L.E.; Villegas-Blas, C. Singular continuous limiting eigenvalue distributions for Schrodinger operators on a 2-sphere. J. Funct. Anal. 141 (1996), no. 1, 249-273.

    Article  MathSciNet  MATH  Google Scholar 

  24. Thomas, L.E.; and Villegas-Blas, C. Asymptotics of Rydberg States for the Hydrogen Atom. Commun. Math. Phys., 187, (1997), 623-645.

    Google Scholar 

  25. Uribe, A.; Villegas-Blas, C. Asymptotics of spectral clusters for a perturbation of the hydrogen atom. Comm. Math. Phys. 280 (2008), no. 1, 123-144.

    Article  MathSciNet  MATH  Google Scholar 

  26. Verdiere, Y.C. de. Spectre conjoint d’opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable. Math Z. 171, (1980), 51-73.

    MATH  Google Scholar 

  27. Vock, E. and Hunziker, W. Stability of Schroodinger eigenvalue problems. Comm. Math. Phys. 83, no. 2, (1982), 281-302.

    Google Scholar 

  28. Weinstein, A. Asymptotics of eigenvalue clusters for the Laplacian plus a potential. Duke Math. J. 44 (1977), no. 4, 883-892.

    Article  MathSciNet  MATH  Google Scholar 

  29. Widom, H. Eigenvalue distribution theorems for certain homogeneous spaces. J. Funct. Anal. 32 (1979), no. 2, 139-147.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisy Ojeda-Valencia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this paper

Cite this paper

Ojeda-Valencia, D., Villegas-Blas, C. (2012). On Limiting Eigenvalue Distribution Theorems in Semiclassical Analysis. In: Benguria, R., Friedman, E., Mantoiu, M. (eds) Spectral Analysis of Quantum Hamiltonians. Operator Theory: Advances and Applications, vol 224. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0414-1_11

Download citation

Publish with us

Policies and ethics