Skip to main content

The Ljapunov–Schmidt Reduction for Some Critical Problems

  • Conference paper
  • First Online:
Concentration Analysis and Applications to PDE

Part of the book series: Trends in Mathematics ((TM))

Abstract

We study a class of problems which are perturbation of some critical problems, namely

  • the Brezis-Nirenberg problem

    $$-\Delta{u}=|u|^{2^{*}-2}u\;+\;\epsilon{u}\;\mathrm{in}\;\Omega,\quad u=0\;\mathrm{on}\;\partial\Omega$$
  • the almost-critical problem

    $$-\Delta{u}=|u|^{2^{*}-2-\epsilon}u\;\mathrm{in}\;\Omega,\quad u=0\;\mathrm{on}\;\partial\Omega$$
  • the Coron problem

    $$-\Delta{u}=|u|^{2^{*}-2}u\;\mathrm{in}\;\Omega\;\backslash B(x_{0},\epsilon),\quad u=0\;\mathrm{on}\;\partial(\Omega\backslash B(x_{0},\epsilon)),$$

where Ω is an open bounded domain in \(\mathbb{R}^n,\;n\geq\;3,2^{*}=\;\frac{2n}{n-2},\epsilon\) is a small real parameter and \(x_{0}\in\Omega\).In particular, we prove existence and multiplicity of positive and sign changing solutions which blow-up or blow-down at one or more points of the domain as the parameter є goes to zero. The main tool is the Ljapunov–Schmidt reduction method.

Mathematics Subject Classification (2010). 35B40, 35J20, 35J55.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Aubin: Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11 (1976), 573–598.

    MathSciNet  MATH  Google Scholar 

  2. A. Bahri, J.M. Coron: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253–294.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bahri, Y. Li, O. Rey: On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995), 67–93.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Bartsch, A. Micheletti, A. Pistoia: On the existence and the profile of nodal solutions of elliptic equations involving critical growth, Calc. Var. Partial Differential Equations 26 (2006), 265–282.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Ben Ayed, K.O. Bouh: Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Commun. Pure Appl. Anal. 7 (2008), no. 5, 1057–1075

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Ben Ayed, K. El Mehdi, M. Gro ssi, O. Rey: A nonexistence result of single peaked solutions to a supercritical nonlinear problem. Commun. Contemp. Math. 5 (2003), no. 2, 179–195

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Ben Ayed, K. El Mehdi, F. Pacella: Classification of low energy sign-changing solutions of an almost critical problem. J. Funct. Anal. 50 (2007), no. 2, 347–373.

    Article  Google Scholar 

  8. M. Ben Ayed, K. El Mehdi, F. Pacella: Blow-up and symmetry of sign-changing solutions to some critical elliptic equations. J. Differential Equations 230 (2006), no. 2, 771–795

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Bianchi, H. Egnell: A note on the Sobolev inequality, J. Funct. Anal. 100-(1) (1991), 18–24.

    Google Scholar 

  10. H. Brézis, L. Nirenberg: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36–4 (1983), 437–477.

    Google Scholar 

  11. L. Caffarelli, B. Gidas, J. Spruck: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271–297.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Castro, M. Clapp: The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, Nonlinearity 16 (2003), 579–590.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Cerami, S. Solimini, M. Struwe: Some existence results for superlinear elliptic boundary value problems involving critical exponents J. Funct. Anal. 69 (1986), 298–306.

    Article  MathSciNet  Google Scholar 

  14. M. Clapp, M. Musso, A. Pistoia: Multipeak solutions to the Bahri–Coron problem in domains with a shrinking hole. J. Funct. Anal. 256 (2009), no. 2, 275–306

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Clapp, T. Weth: Minimal nodal solutions of the pure critical exponent problem on a symmetric domain. Calc. Var. Partial Differential Equations 21 (2004), no. 1, 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  16. J.M. Coron: Topologie et cas limite des injections de Sobolev. C. R. Acad. Sci. Paris Ser. I Math. 299 (1984), no. 7, 209–212.

    MathSciNet  MATH  Google Scholar 

  17. M. del Pino , J. Do lbeault, M. Musso :Bubble-tower radial solutions in the slightly supercritical Brezis–Nirenberg problem. J. Differential Equations 193 (2003), no. 2, 280–306.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. del Pino, J. Dolbeault, M. Musso: The Brezis–Nirenberg problem near criticality in dimension 3. J. Math. Pures Appl. 83 (2004), no. 12, 1405–1456.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Del Pino, P. Felmer, M. Musso: Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Soc. 35 (2003), 513–521.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Del Pino, P. Felmer, M. Musso: Multi-peak solutions for super-critical elliptic problems in domains with small holes, J. Differential Equations 182 (2002), 511–540.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Del Pino , P. Felmer, M. Musso:Two-bubble solutions in the super-critical Bahri–Coron’s problem, Calc. Var. Partial Differential Equations 16 (2003), 113–145.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Devillanova, S. Solimini: Concentration estimates and multiple solutions to elliptic problems at critical growth, Advan. Diff. Equat. 7 (2002), 1257–1280.

    MathSciNet  MATH  Google Scholar 

  23. G. Devillanova, S. Solimini: A multiplicity result for elliptic equations at critical growth in low dimension, Comm. Contemp. Math. (to appear).

    Google Scholar 

  24. Y. Ge, M. Musso , A. Pisto ia: Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains. Comm. Partial Differential Equations 35 (2010), no. 8, 14191457.

    Google Scholar 

  25. Y. Ge, R. Jing, F. Pacard: Bubble towers for supercritical semilinear elliptic equations. J. Funct. Anal. 221 (2005), no. 2, 251–302.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Grossi, F. Takahashi: Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, J. Funct. Anal. 259 (2010), 904–917.

    Article  MathSciNet  MATH  Google Scholar 

  27. Z.C. Han: Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Po incaré, Anal. Non Lin. 8 (1991), 159–174.

    Google Scholar 

  28. G. Hardy, J. Littlewood: Some properties of fractional integrals, Math. Z. 27 (1928) 565–606.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Kazdan, F. Warner: Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567–597.

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Li, S. Yan, J. Yang: An elliptic problem with critical growth in domains with shrinking holes. J. Differential Equations 198 (2004), no. 2, 275–300.

    Article  MathSciNet  MATH  Google Scholar 

  31. A.M. Micheletti, A. Pistoia: On the effect of the domain geometry on the existence of sign changing solutions to elliptic problems with critical and supercritical growth. Nonlinearity 17 (2004), no. 3, 851–866.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Musso, A. Pistoia: Double blow-up solutions for a Brezis–Nirenberg type problem. Commun. Contemp. Math. 5 (2003), no. 5, 775–802.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Musso, A. Pistoia: Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains. J. Math. Pures Appl. 86 (2006), no. 6, 510–528.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Musso, A. Pistoia: Sign changing solutions to a Bahri–Coron problem in pierced domains. Discrete Contin. Dyn. Syst. 21 (2008), no. 1, 295–306.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Musso, A. Pistoia: Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent. Indiana Univ. Math. J. 51 (2002), no. 3, 541–579,

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Musso, A. Pistoia: Tower of bubbles for almost critical problems in general domains, J. Math. Pures Appl. 93 (2010), 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Pistoia, O. Rey: Multiplicity of solutions to the supercritical Bahri–Coron’s problem in pierced domains. Adv. Differential Equations 11 (2006), no. 6, 647–666.

    MathSciNet  MATH  Google Scholar 

  38. A. Pistoia, T. Weth: Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem, Ann. Inst. H. Po incaré Anal. Non Linéaire 24 (2007), 325–340.

    Article  MathSciNet  MATH  Google Scholar 

  39. S.I. Pohožaev: On the eigenfunctions of the equation \( \Delta u + \lambda f(u) = 0, \) So vietMath. Dokl. 6 (1965), 1408–1411.

    Google Scholar 

  40. O. Rey: The role of the Green function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), 1–52.

    Article  MathSciNet  MATH  Google Scholar 

  41. O. Rey: Proof of two conjectures of H. Brezis and L.A. Peletier, Manuscripta Math. 65 (1989), 19–37.

    Google Scholar 

  42. O. Rey: On a variational problem with lack of compactness: the effect of small holes in the domain C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), no. 12, 349–352.

    MathSciNet  MATH  Google Scholar 

  43. O. Rey: Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations 4 (1991), 1155–1167.

    MathSciNet  MATH  Google Scholar 

  44. G. Talenti: Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353–372.

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Sobolev: On a theorem of functional analysis, AMS Transl. Series 2 34 (1963) 39–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Pistoia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel AG

About this paper

Cite this paper

Pistoia, A. (2013). The Ljapunov–Schmidt Reduction for Some Critical Problems. In: Adimurthi, ., Sandeep, K., Schindler, I., Tintarev, C. (eds) Concentration Analysis and Applications to PDE. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0373-1_5

Download citation

Publish with us

Policies and ethics