Skip to main content

Difference Equations in Spaces of Regular Functions: a tribute to Salvatore Pincherle

  • Chapter
  • First Online:
Mathematicians in Bologna 1861–1960

Abstract

In [14], Pincherle studies the surjectivity of a difference operator with constant coefficients in the space of holomorphic functions. In this paper, we discuss how this work can be rephrased in the context of modern functional analysis and we conclude by extending his results and we show that difference equations act surjectively on the space of quaternionic regular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharonov, Y., and D. Rohrlich. 2005. Quantum paradoxes: quantum theory for the perplexed. Weinheim: Wiley.

    Google Scholar 

  2. Berenstein, C.A., T. Kawai, and D.C. Struppa. 1996. Interpolating varieties and the Fabry–Ehrenpreis–Kawai gap theorem. Adv Math 122(2): 280–310.

    Google Scholar 

  3. Berenstein, C.A., and D.C. Struppa. 1987. A remark on: ”Convolutors in spaces of holomorphic functions” by A. Meril and Struppa. Complex Analysis, II (College Park, Md., 198586), 276–280. In Lecture notes in mathematics, 1276. Berlin: Springer.

    Google Scholar 

  4. Berenstein, C.A., and D.C. Struppa. 1987. Solutions of convolution equations in convex sets. Am J Math 109: 521–43.

    Google Scholar 

  5. Berenstein, C.A., and D.C. Struppa. 1989. Complex analysis and convolution equations. In Several complex variables V: Encyclopaedia of mathematical sciences, ed. G.M. Khenkin, 54, 5–111, Moscow: Akad Nauk SSSR, Vsesoyuz Inst Nauchn i Tekhn Inform (Russian). English transl.: 1–108, Berlin-Heidelberg: Springer, 1993.

    Google Scholar 

  6. Berenstein, C.A., and B.A. Taylor. 1980. Interpolation problems in \({\mathbb{C}}^{n}\) with applications to harmonic analysis. J Analyse Math 38: 188–254.

    Google Scholar 

  7. Colombo, F., A. Damiano, I. Sabadini, and D.C. Struppa. 2005. A surjectivity theorem for differential operators on spaces of regular functions. Compl Var Theor Appl 50: 389–400.

    Google Scholar 

  8. Colombo, F., I. Sabadini, F. Sommen, and D.C. Struppa. 2004. Analysis of Dirac systems and computational algebra. Progress in mathematical physics, 39. Boston: Birkhäuser.

    Google Scholar 

  9. Dieudonné, J., and L. Schwartz. 1950. La dualité dans les espaces \(\mathcal{F}\)F et \((\mathcal{L}\mathcal{F})\). (French) Ann Inst Fourier Grenoble 1(1949): 61–101.

    Google Scholar 

  10. Ehrenpreis, L. 1970. Fourier analysis in several complex variables. New York: Wiley.

    Google Scholar 

  11. Krivosheev, A.S., and V.V. Napalkov. 1992. Complex analysis and convolution operators. (Russian) Uspekhi Mat Nauk 47(288): 3–58; translation in Russian Mathematical Surveys 47(6): 1–56.

    Google Scholar 

  12. Meril, A., and D.C. Struppa. 1987. Convolutors in spaces of holomorphic functions, Complex analysis II (College Park, MD, 1985–86), 253–75. In Lecture Notes in Mathematics, 1276. Berlin: Springer.

    Google Scholar 

  13. Palamodov, V.P. 1970. Linear differential operators with constant coefficients. Translated from the Russian by A. A. Brown. Die Grundlehren der mathematischen Wissenschaften, Band 168. New York, Berlin: Springer.

    Google Scholar 

  14. Pincherle, S. 1888. Sulla risoluzione dell’equazione funzionale \(\Sigma {h}_{\nu }\varphi (x + {\alpha }_{\nu }) = f(x)\) a coefficienti costanti. Mem R Accad Sci Ist Bologna 9: 45–71.

    Google Scholar 

  15. Pincherle, S. 1926. Sur la résolution de l’équation fonctionnelle \(\sum\limits {h}^{\nu }\varphi ({\alpha }^{\nu }) = f(x)\) à cofficients constants. Acta Math 48: 279–304.

    Google Scholar 

  16. Pincherle, S.1954. Opere Scelte. Unione Matematica Italiana, Edizioni Cremonese, Roma vol. I, II.

    Google Scholar 

  17. Sabadini, I., and D.C. Struppa. 1996. Topologies on quaternionic hyperfunctions and duality theorems. Compl Var Theor Appl 30: 19–34.

    Google Scholar 

  18. Struppa, D.C. 1981. The fundamental principle for systems of convolution equations. Memoir Am Math Soc 273: 1–64.

    Google Scholar 

  19. Struppa, D.C., and C. Turrini. 1991. Pincherle’s contribution to the Italian school of analytic functionals. Conference on the history of mathematics, Italian, Cetraro, 1988, 551–560, Sem Conf 7, EditEl, Rende.

    Google Scholar 

  20. Sudbery, A. 1979. Quaternionic analysis. Math Proc Camb Phil Soc 85: 199–225.

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to Professor S. Coen for inviting them to contribute to the volume.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Sabadini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Sabadini, I., Struppa, D.C. (2012). Difference Equations in Spaces of Regular Functions: a tribute to Salvatore Pincherle. In: Coen, S. (eds) Mathematicians in Bologna 1861–1960. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0227-7_18

Download citation

Publish with us

Policies and ethics