Skip to main content

The De Giorgi Method for Nonlocal Fluid Dynamics

  • Chapter
  • First Online:
Nonlinear Partial Differential Equations

Part of the book series: Advanced Courses in Mathematics - CRM Barcelona ((ACMBIRK))

Abstract

In 1957, E. De Giorgi [7] solved the 19th Hilbert problem by proving the regularity and analyticity of variational (“energy minimizing weak”) solutions to nonlinear elliptic variational problems. In so doing, he developed a very geometric, basic method to deduce boundedness and regularity of solutions to a priori very discontinuous problems. The essence of his method has found applications in homogenization, phase transition, inverse problems, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. 171 (2010), no. 3, 1903– 1930.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Chae, On the regularity conditions for the dissipative quasi-geostrophic equations, SIAM J. Math. Anal. 37 (2006), no. 5, 1649–1656 (electronic).

    Google Scholar 

  4. D. Chae and J. Lee, Global well-posedness in the super-critical dissipative quasi-geostrophic equations, Commun. Math. Phys. 233 (2003), no. 2, 297– 311.

    MathSciNet  MATH  Google Scholar 

  5. C.-C. Chen, R. M. Strain, H.-T. Yau, and T.-P. Tsai, Lower bound on the blow-up rate of the axisymmetric Navier–Stokes equations, Int. Math. Res. Notices 9 (2008), 31 pp.

    Google Scholar 

  6. P. Constantin, Euler equations, Navier–Stokes equations and turbulence, in: Mathematical Foundation of Turbulent Viscous Flows, Lecture Notes in Math., vol. 1871, pp. 1–43, Springer, Berlin, 2006.

    Google Scholar 

  7. E. De Giorgi, Sulla differenziabilit`a e l’analiticit`a delle estremaili degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 3 (1957), 25–43.

    Google Scholar 

  8. G. Duvaut and J.-L. Lions, Les in´equations en m´ecanique et en physique, Travaux et Recherches Math´ematiques, vol. 21, Dunod, Paris, 1972.

    Google Scholar 

  9. A. Kiselev, F. Nazarov, and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 (2007), 445–453.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Laurence and S. Salsa, Regularity of the free boundary of an American option on several assets, Comm. Pure Appl. Math. 62 (2009), no. 7, 969–994.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Seregin and V. Sverak, On Type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations, Comm. Partial Differential Equations 34 (2009), no. 2, 171–201.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Vasseur, A new proof of partial regularity of solutions to Navier–Stokes equations, Nonlinear Differential Equations Appl. 14 (2007), no. 5–6, 753–785.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. M. Zaslavsky, M. Edleman, H. Weitzner, B. A. Carreras, G. McKee, R. Bravenec, and R. Fonck, Large-scale behavior of the tokamak density fluctuations, Phys. Plasmas 7 (2000), 3691–3698.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Caffarelli, L.A., Vasseur, A. (2012). The De Giorgi Method for Nonlocal Fluid Dynamics. In: Nonlinear Partial Differential Equations. Advanced Courses in Mathematics - CRM Barcelona. Springer, Basel. https://doi.org/10.1007/978-3-0348-0191-1_1

Download citation

Publish with us

Policies and ethics