Skip to main content

Proteases, Coagulation, and Inflammation

  • Chapter
  • First Online:
Proteases and Their Receptors in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 782 Accesses

Abstract

It is now widely accepted that inflammation and coagulation are two intimately linked processes. Pre-clinical evidence on this cross-talk have accumulated since 1961 when it was demonstrated that coagulation factors could cause an inflammatory response in in vivo pre-clinical studies. The discovery of thrombin receptors has been instrumental in clarifying several molecular aspects at the basis of the cross-talk between the coagulation and inflammation pathways. At the present stage we know that the coagulation–inflammation axis plays an important pathological role in many cardiovascular inflammatory-based disease. This chapter will address the role played by the thrombin receptors in the inflammation–coagulation axis and summarize the more recent pre-clinical and clinical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jancso’ N (1961) Inflammation and the inflammatory mechanisms. J Pharm Pharmacol 13:577–594

    Article  Google Scholar 

  2. Wiseman EH, Chang YH (1968) The role of fibrin in the inflammatory response to carrageenin. J Pharmacol Exp Ther 159:206–210

    PubMed  CAS  Google Scholar 

  3. Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057–1068

    Article  PubMed  CAS  Google Scholar 

  4. Cirino G, Cicala C, Bucci MR, Sorrentino L, Maraganore JM, Stone SR (1996) Thrombin functions as an inflammatory mediator through activation of its receptor. J Exp Med 183(3):821–827

    Article  PubMed  CAS  Google Scholar 

  5. Opal SM, Esmon CT (2003) Bench to bedside review: functional relationship between coagulation and innate immune response and their respective roles in pathogenesis of sepsis. Crit Care 7:23–38

    Article  PubMed  Google Scholar 

  6. Libby P, Aikawa M (2002) Stabilization of atherosclerotic plaque: new mechanisms and clinical targets. Nat Med 8:1257–1262

    Article  PubMed  CAS  Google Scholar 

  7. van der Poll T, Levi M, Hack CE, ten Cate H, van Deventer SJ, Eerenberg AJ, de Groot ER, Jansen J, Gallati H, Büller HR et al (1994) Elimination of interleukine-6 attenuates coagulation activation in experimental endotoxemia in chimpanzees. J Exp Med 179:1253–1259

    Article  PubMed  Google Scholar 

  8. van Deventer SJ, Buller HR, ten Cate JW, Aarden LA, Hack CE, Sturk A (1990) Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 76:2520–2526

    PubMed  Google Scholar 

  9. Boermeester MA, Leeuwen PA, Coyle SM, Wolbink GJ, Hack CE, Lowry SF (1995) Interleukin-1 blockade attenuates mediator release and dysregulation of the hemostatic mechanism during human sepsis. Arch Surg 130:739–748

    PubMed  CAS  Google Scholar 

  10. Cicala C, Cirino G (1998) Linkage between inflammation and coagulation: an update on the molecular basis of the crosstalk. Life Sci 62(20):1817–1824

    Article  PubMed  CAS  Google Scholar 

  11. Aird WC (2001) Vacular bed-specific hemostasis:role of endothelium in sepsis pathogenesis. Crit Care Med 29:S28–S34

    Article  PubMed  CAS  Google Scholar 

  12. Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057–1068

    Article  PubMed  CAS  Google Scholar 

  13. Nystedt S, Emilsson K, Wahlestedt C, Sundelin J (1994) Molecular cloning of a potential proteinase activated receptor. Proc Nat Acad Sci USA 91:9208–9212

    Article  PubMed  CAS  Google Scholar 

  14. Ishiara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR (1997) Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386:502–506

    Article  Google Scholar 

  15. Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV Jr, Tam C, Coughlin SR (1998) A dual thrombin receptor system for platelet activation. Nature 394:690–694

    Article  PubMed  CAS  Google Scholar 

  16. Cirino G, Napoli C, Bucci M, Cicala C (2000) Inflammation-coagulation network: are serine protease receptors the knot? Tips 21:170–172

    PubMed  CAS  Google Scholar 

  17. Hollenberg MD, Oikonomopoulou K, Hansen KK, Saifeddine M, Ramachandran R, Diamandis EP (2008) Kallikreins and proteinase-mediated signaling: proteinase-activated receptors (PARs) and the pathophysiology of inflammatory diseases and cancer. Biol Chem 389:643–651

    Article  PubMed  CAS  Google Scholar 

  18. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R (2001) Proteinase-activated receptors. Pharmacol Rev 53:245–282

    PubMed  CAS  Google Scholar 

  19. Holinstat M, Voss B, Bilodeau ML, Hamm HE (2007) Protease-activated receptors differentially regulate human platelet activation through a phosphatidic acid-dependent pathway. Mol Pharmacol 71:686–694

    Article  PubMed  CAS  Google Scholar 

  20. Molino M, Barnathan ES, Numerof R, Clark J, Dreyer M, Cumashi A, Hoxie JA, Schechter N, Woolkalis M, Brass LF (1997) Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem 27:4043–4049

    Google Scholar 

  21. Fox MT, Harriott P, Walker B, Stone SR (1997) Identification of potential activators of proteinase-activated receptor-2. FEBS Lett 417:267–269

    Article  PubMed  CAS  Google Scholar 

  22. Cottrell GS, Amadesi S, Schmidlin F, Bunnett N (2003) Protease-activated receptor 2: activation, signalling and function. Biochem Soc Trans 31(Pt 6):1191–1197

    Article  PubMed  CAS  Google Scholar 

  23. Déry O, Corvera CU, Steinhoff M, Bunnett NW (1998) Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 274:C1429–C1452

    PubMed  Google Scholar 

  24. De Candia E, Hall SW, Rutella S, Landolfi R, Andrews RK, De Cristofaro R (2001) Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J Biol Chem 276:4692–4698

    Article  PubMed  Google Scholar 

  25. Nakanishi-Matsui M, Zheng YW, Sulciner DJ, Weiss EJ, Ludeman MJ, Coughlin SR (2000) PAR-3 is a cofactor for PAR-4 activation by thrombin. Nature 404:609–613

    Article  PubMed  CAS  Google Scholar 

  26. Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407:258–264

    Article  PubMed  CAS  Google Scholar 

  27. Jennings LK (2009) Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost 102:248–257

    PubMed  CAS  Google Scholar 

  28. Leger AJ, Covic L, Kuliopulos A (2006) Protease-activated receptors in cardiovascular diseases. Circulation 14:1070–1077

    Article  Google Scholar 

  29. Coughlin SR (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 3:1800–1814

    Article  PubMed  CAS  Google Scholar 

  30. Johnson K, Choi Y, DeGroot E, Samuels I, Creasey A, Aarden L (1998) Potential mechanisms for proinflammatory vascular cytokine response to coagulation activation. J Immunol 160:5130–5135

    PubMed  CAS  Google Scholar 

  31. Houliston RA, Keogh RJ, Sugden D, Dudhia J, Carter TD, Wheeler-Jones CP (2002) Protease-activated receptors upregulate cyclooxygenase-2 expression in human endothelial cells. Thromb Hemost 88:321–328

    CAS  Google Scholar 

  32. Levi M, van der Poll T (2010) Inflammation and coagulation. Crit Care Med 38:s26–s32

    Article  PubMed  CAS  Google Scholar 

  33. Derian CK, Damiano BP, Addo MF, Darrow AL, D’Andrea MR, Nedelman M, Zhang HC, Maryanoff BE, Andrade-Gordon P (2003) Blockade of the thrombin receptor protease-activated receptor-1 with a small molecule antagonist prevents thrombus formation and vascular occlusion in non human primates. J Pharmacol Exp Ther 304:855–861

    Article  PubMed  CAS  Google Scholar 

  34. Covic L, Misra M, Badar J, Singh C, Kuliopulos A (2002) Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Nat Med 8:1161–1165

    Article  PubMed  CAS  Google Scholar 

  35. Kato Y, Kita Y, Hirasawa-Taniyama Y, Nishio M, Mihara K, Ito K, Yamanaka T, Seki J, Miyata S, Mutoh S (2003) Inhibition of arterial thrombosis by protease-activated receptor antagonist, FR171113, in the guinea pig. Eur J Pharmacol 473:163–169

    Article  PubMed  CAS  Google Scholar 

  36. Vandendries ER, Hamilton JR, Coughlin SR, Furie B, Furie BC (2007) PAR-4 is required for platelet thrombus propagation but not fibrin generation in a mouse model of thrombosis. Proc Natl Acad Sci USA 104:288–292

    Article  PubMed  CAS  Google Scholar 

  37. Andrade-Gordon P, Maryanoff BE, Derian CK, Zhang HC, Addo MF, Darrow AL, Eckardt AJ, Hoekstra WJ, McComsey DF, Oksenberg D et al (1999) Design, synthesis, and biological characterization of a peptide-mimetic antagonist for a tethered-ligand receptor. Proc Natl Acad Sci USA 96:12257–12262

    Article  PubMed  CAS  Google Scholar 

  38. Zhang HC, McComsey DF, White KB, Addo MF, Andrade-Gordon P, Derian CK, Oksenberg D, Maryanoff BE (2001) Thrombin receptor (PAR-1) antagonists. Solid-phase synthesis of indole-based peptide mimetics by anchoring to a secondary amide. Bioorg Med Chem Lett 11:2105–2109

    Article  PubMed  CAS  Google Scholar 

  39. Zhang HC, Derian CK, Andrade-Gordon P, Hoekstra WJ, McComsey DF, White KB, Poulter BL, Addo MF, Cheung WM, Damiano BP et al (2001) Discovery and optimization of a novel series of thrombin receptor (PAR-1) antagonists: potent, selective peptide mimetics based on indole and indazole templates. J Med Chem 44:1021–1024

    Article  PubMed  CAS  Google Scholar 

  40. Maryanoff BE, Zhang H, Andrade-Gordon P, Derian CK (2003) Discovery of potent peptide-mimetic antagonists for the human thrombin receptor, protease-activated receptor-1 (PAR-1). Curr Med Chem 1:13–36

    CAS  Google Scholar 

  41. Kuliopulos A, Covic L (2005) G protein coupled receptor (GPCR) agonists and antagonists and methods of activating and inhibiting GPCR using the same. US 6,864,229

    Google Scholar 

  42. Covic L, Gresser AL, Talavera J, Swift S, Kuliopulos A (2002) Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane tethered peptides. Proc Natl Acad Sci USA 99:643–648

    Article  PubMed  CAS  Google Scholar 

  43. Ahn HS, Arik L, Boykow G, Burnett DA, Caplen MA, Czarniecki M, Domalski MS, Foster C, Manna M, Stamford AW, Wu Y (1999) Structure-activity relationships of pyrroloquinazolines as thrombin receptor antagonists. Bioorg Med Chem Lett 9:2073–2078

    Article  PubMed  CAS  Google Scholar 

  44. Strande JL, Hsu A, Su J, Fu X, Gross GJ, Baker JE (2007) SCH 79797, a selective PAR-1 antagonist, limits myocardial ischemia/reperfusion injury in rat hearts. Basic Res Cardiol 102:350–358

    Article  PubMed  CAS  Google Scholar 

  45. Chackalamannil S, Asberom T, Xia Y (2000) Preparation of himbacine analogs as thrombin receptor antagonists. US 6,063,847

    Google Scholar 

  46. Chackalamannil S, Chelliah MV, Clasby MC, Xia Y (2003) Preparation of himbacine analogues as thrombin receptor antagonists. WO 2,003,033,501

    Google Scholar 

  47. Chelliah MV, Chackalamannil S, Xia Y (2005) Preparation of constrained himbacine analogs as thrombin receptor antagonists. US 2,005,267,155

    Google Scholar 

  48. Chackalamannil S, Xia Y, Greenlee WJ, Clasby M, Doller D, Tsai H, Asberom T, Czarniecki M, Ahn HS, Boykow G, Foster C, Agans-Fantuzzi J, Bryant M, Lau J, Chintala M (2008) Discovery of a novel, orally active himbacine-based thrombin receptor antagonist (SCH 530348) with potent antiplatelet activity. J Med Chem 51:3061–3064

    Article  PubMed  CAS  Google Scholar 

  49. Becker RC, Moliterno DJ, Jennings LK, Pieper KS, Pei J, Niederman A, Ziada KM, Berman G, Strony J, Joseph D, Mahaffey KW, Van de Werf F, Veltri E, Harrington RA (2009) Safety and tolerability of SCH 530348 in patients undergoing non-urgent percutaneous coronary intervention: a randomised, double-blind, placebo-controlled phase II study. Lancet 14:919–928

    Article  Google Scholar 

  50. The TRA•CER Executive and Steerin (2009) The thrombin receptor antagonist for clinical event reduction in acute coronary syndrome (TRA*CER) trial: study design and rationale. Am Heart J 158:327–334

    Article  Google Scholar 

  51. Morrow D, Scirica B, Fox K, Berman G, Strony J, Veltri E, Bonaca MP, Fish P, McCabe CH, Braunwald E (2009) Evaluation of a novel antiplatelet agent for secondary prevention in patients with a history of atherosclerotic disease: design and rationale for the Thrombin-Receptor Antagonist in Secondary Prevention of Atherothrombotic Ischemic Events (TRA 2 degrees P)-TIMI 50 trial. Am Heart J 158:335–341

    Article  PubMed  CAS  Google Scholar 

  52. Hezi-Yamit A, Wong J (2009) Local delivery of PAR-1 antagonists to treat vascular complications. US 2,009,297,576

    Google Scholar 

  53. Riewald M, Petrovan RJ, Donner A, Ruf W (2003) Activated protein C signals through the thrombin receptor PAR-1 in endothelial cells. J Endotoxin Res 9:317–321

    PubMed  CAS  Google Scholar 

  54. Feistritzer C, Riewald M (2005) Endothelial barrier protection by activated protein C through PAR-1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 105:3178–3184

    Article  PubMed  CAS  Google Scholar 

  55. Selak MA, Chignard M, Smith JB (1988) Cathepsin G is a strong platelet agonist released by neutrophils. Biochem J 251:293–299

    PubMed  CAS  Google Scholar 

  56. Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR (2000) Cathepsin G activates protease-activated receptor 4 in human platelets. J Biol Chem 275:6819–6823

    Article  PubMed  CAS  Google Scholar 

  57. Wu CC, Hwang TL, Liao CH, Kuo SC, Lee CY, Teng CM (2002) Selective inhibition of protease-activated receptor 4-dependent platelet activation by YD-3. Thromb Haemost 87:1026–1033

    PubMed  CAS  Google Scholar 

  58. Wu CC, Hwang TL, Liao CH, Kuo SC, Lee FY, Lee CY, Teng CM (2003) The role of PAR-4 in thrombin-induced thromboxane production in human platelets. Thromb Haemost 90:299–308

    PubMed  CAS  Google Scholar 

  59. Peng CY, Pan SL, Guh JH, Liu YN, Chang YL, Kuo SC, Lee FY, Teng CM (2004) The indazole derivative YD-3 inhibits thrombin-induced vascular smooth muscle cell proliferation and attenuates intimal thickening after balloon injury. Thromb Haemost 92:1232–1239

    PubMed  CAS  Google Scholar 

  60. Slofstra SH, Bijlsma MF, Groot AP, Reitsma PH, Lindhout T, ten Cate H, Spek CA (2007) Protease-activated receptor-4 inhibition protects from multiorgan failure in a murine model of systemic inflammation. Blood 110:3176–3182

    Article  PubMed  CAS  Google Scholar 

  61. Cirino G, Severino B (2010) Thrombin receptors and their antagonists: an update on the patent literature. Expert Opin Ther Pat 20:875–884

    Article  PubMed  CAS  Google Scholar 

  62. Beri R (2006) The use and identification of antagonists of protease-activated receptor 3 (PAR-3) for the treatment of asthma. WO 2,006,054,931

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Cirino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Cirino, G., Bucci, M. (2011). Proteases, Coagulation, and Inflammation. In: Vergnolle, N., Chignard, M. (eds) Proteases and Their Receptors in Inflammation. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0157-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0157-7_10

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0156-0

  • Online ISBN: 978-3-0348-0157-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics