Skip to main content

Flows of Generalized Oldroyd-B Fluids in Curved Pipes

  • Chapter
  • First Online:
Parabolic Problems

Abstract

The aim of this work is to present a numerical study of generalized Oldroyd-B flows with shear-thinning viscosity in a curved pipe of circular cross section and arbitrary curvature ratio. Flows are driven by a given pressure gradient and behavior of the solutions is discussed with respect to different rheologic and geometric flow parameters.

Mathematics Subject Classification (2000). Primary 76A05; Secondary 74S05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Arada, M. Pires and A. Sequeira, Viscosity effects on flows of generalized Newtonian fluids through curved pipes, Computers and Mathematics with Applications, 53 (2007), 625–646.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Arada, M. Pires and A. Sequeira, Numerical approximation of viscoelastic Oldroyd-B flows in curved pipes, RIMS, Kôkyûroku Bessatsu, B1 (2007), 43–70.

    MATH  MathSciNet  Google Scholar 

  3. N. Arada, M. Pires and A. Sequeira, Numerical simulations of shear-thinning Oldroyd-B fluids in curved pipes, IASMETransactions, issue 6 , Vol 2 (2005), 948–959.

    MathSciNet  Google Scholar 

  4. A.A. Berger, L. Talbot and L.-S. Yao, Flow in curved pipes, Ann. Rev. Fluid Mech., 15 (1983), 461–512.

    Article  Google Scholar 

  5. R.B. Bird, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, John Wiley & Sons, New York (1987).

    Google Scholar 

  6. S. Chien, S. Usami, R.J. Dellemback, M.I. Gregersen, Blood viscosity: influence of erythrocyte deformation, Science 157 (3790), 827–829, 1967.

    Article  Google Scholar 

  7. S. Chien, S. Usami, R.J. Dellemback, M.I. Gregersen, Blood viscosity: influence of erythrocyte aggregation, Science 157 (3790), 829–831, 1967.

    Article  Google Scholar 

  8. P. Daskopoulos and A.M. Lenhoff, Flow in curved ducts: bifurcation structure for stationary ducts, J. Fluid Mech., 203 (1989), 125–148.

    Article  MathSciNet  Google Scholar 

  9. W.R. Dean, Note on the motion of fluid in curved pipe, Philos. Mag., 20, 208 (1927).

    Google Scholar 

  10. W.R. Dean, The streamline motion of fluid in curved pipe, Philos. Mag., 30, 673 (1928).

    Google Scholar 

  11. J. Eustice, Flow of water in curved pipes, Proc. R. Soc. Lond. A 84 (1910), 107–118.

    Google Scholar 

  12. J. Eustice, Experiments of streamline motion in curved pipes, Proc. R. Soc. Lond. A 85 (1911), 119–131.

    Google Scholar 

  13. Y. Fan, R.I. Tanner and N. Phan-Thien, Fully developed viscous and viscoelastic flows in curved pipes, J. Fluid Mech., 440 (2001), 327–357.

    Article  MATH  Google Scholar 

  14. J.H. Grindley and A.H. Gibson, On the frictional resistance to the flow of air through a pipe, Proc. R. Soc. Lond. A 80 (1908), 114–139.

    MATH  Google Scholar 

  15. D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids, Springer Verlag, New York (1990).

    MATH  Google Scholar 

  16. R. Keunings, A Survey of Computational Rheology, In: Proceedings of the XIII International Congress on Rheology (D.M. Binding et al. ed.), British Soc. Rheol., 1 (2000), 7–14.

    Google Scholar 

  17. R. Owens and T.N. Phillips, Computational Rheology, Imperial College Press, London (2002).

    Book  MATH  Google Scholar 

  18. T.J. Pedley, Fluid Mechanics of Large Blood Vessels, Cambridge University Press, Cambridge (1980).

    MATH  Google Scholar 

  19. M. Pires, Mathematical and Numerical Analysis of Non-Newtonian Fluids in Curved Pipes, PhD thesis, IST, Lisbon (2005)

    Google Scholar 

  20. K.R. Rajagopal, Mechanics of non-Newtonian Fluids, Galdi,G.P. and J. Něcas (eds.) Recent Developments in Theoretical Fluid Mechanics, Pitman Research Notes in Mathematics 291 (1993), Longman Scientific an Technical, 129–162.

    Google Scholar 

  21. M. Renardy, Mathematical Analysis of Viscoelastic Flows, SIAM (2000).

    Google Scholar 

  22. M. Renardy, W.J. Hrusa and J.A. Nohel, Mathematical problems in Viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman 35 (1987).

    Google Scholar 

  23. A.M. Robertson, On viscous flow in curved pipes of non-uniform cross section, Inter. J. Numer. Meth. fluid., 22 (1996), 771–798.

    Article  MATH  Google Scholar 

  24. A.M. Robertson and S.J. Muller, Flow of Oldroyd-B fluids in curved pipes of circular and annular cross-section, Int. J. Non-Linear Mechanics, 31 (1996), 1–20.

    Article  MATH  Google Scholar 

  25. A.M. Robertson, A. Sequeira and M. Kameneva, Hemorheology, Hemodynamical Flows: Modeling, Analysis and Simulation, Series: Oberwolfach Seminars, G.P. Galdi, R. Rannacher, A.M. Robertson, S. Turek, Birkhäuser, 37 (2008), 63–120.

    MathSciNet  Google Scholar 

  26. W.R. Schowalter, Mechanics of Non-Newtonian Fluids, Pergamon Press, New York (1978).

    Google Scholar 

  27. W.Y. Soh and S.A. Berger, Fully developed flow in a curved pipe of arbitrary curvature ratio, Int. J. Numer. Meth. Fluid., 7 (1987), 733–755.

    Article  MATH  Google Scholar 

  28. G.B. Thurston, Viscoelasticity of human blood, Biophys. J., 12 (1972), 1205–1217.

    Article  Google Scholar 

  29. C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics, Encyclopedia of Physics, (ed. S. Flugge), vol. III / 3 (1965), Springer-Verlag.

    Google Scholar 

  30. G.S. Williams, C.W. Hubbell and G.H. Fenkell,  Experiments at Detroit, Mich. on the effect of curvature upon the flow of water in pipes, Trans. ASCE 47 (1902), 1–196.

    Google Scholar 

  31. Z.H. Yang and H.B. Keller, Multiple laminar flows through curved pipes, Appl. Numer. Math., 2 (1986), 257–271.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marília Pires .

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Herbert Amann on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Pires, M., Sequeira, A. (2011). Flows of Generalized Oldroyd-B Fluids in Curved Pipes. In: Escher, J., et al. Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 80. Springer, Basel. https://doi.org/10.1007/978-3-0348-0075-4_2

Download citation

Publish with us

Policies and ethics