Skip to main content

Part of the book series: Advanced Courses in Mathematics — CRM Barcelona ((ACMBIRK))

  • 1358 Accesses

Abstract

In this section we describe the mean curvature flow with surgeries which has been defined in [48] for two-convex surfaces of dimension n ≥ 3. Such a construction is inspired by the one which was introduced by Hamilton [37] for the Ricci flow and which enabled Perelman [56] to prove the geometrization conjecture for three-dimensional manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. U. Abresch, J. Langer, The normalized curve shortening flow and homothetic solutions, J. Differential Geom. 23 (1986), 175–196.

    MATH  MathSciNet  Google Scholar 

  2. R. Alessandroni, C. Sinestrari, Evolution of hypersurfaces by powers of the scalar curvature (2009), preprint.

    Google Scholar 

  3. S. J. Altschuler, S. B. Angenent, Y. Giga, Mean curvature flow through singularities for surfaces of rotation, J. Geom. Analysis 5 (1995), 293–358.

    MATH  MathSciNet  Google Scholar 

  4. L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions, in: G. Buttazzo, A. Marino, M. K. V. Murthy (eds.), Calculus of Variations and Partial Differential Equations (Pisa, 1996), Springer, Berlin (2000).

    Google Scholar 

  5. L. Ambrosio, H. M. Soner, Level set approach to mean curvature flow in any codimension, J. Differential Geom. 43 (1996), 693–737.

    MATH  MathSciNet  Google Scholar 

  6. B. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Variations 2 (1994), 151–171.

    Article  MATH  Google Scholar 

  7. B. Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999), 151–161.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Andrews, Motion of hypersurfaces by Gauss curvature, Pacific J. Math. 195 (2000), 1–36.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. B. Angenent, On the formation of singularities in the curve shortening flow, J. Differential Geom. 33 (1991), 601–633.

    MATH  MathSciNet  Google Scholar 

  10. S. B. Angenent, Shrinking doughnuts in: Nonlinear Diffusion Equations and Their Equilibrium States (Gregynog, 1989), Birkhäuser, Boston (1992).

    Google Scholar 

  11. S. B. Angenent, J. J. L. Velázquez, Degenerate neckpinches in mean curvature flow, J. Reine Angew. Math. 482 (1997), 15–66.

    MATH  MathSciNet  Google Scholar 

  12. K. A. Brakke, The Motion of a Surface by Its Mean Curvature, Princeton University Press, Princeton (1978).

    MATH  Google Scholar 

  13. E. Cabezas-Rivas, V. Miquel, Volume preserving mean curvature flow in the hyperbolic space, Indiana Univ. Math. J. 56 (2007), 2061–2086.

    Article  MATH  MathSciNet  Google Scholar 

  14. Y. G. Chen, Y. Giga, S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation, J. Differential Geom. 33 (1991), 749–786.

    MATH  MathSciNet  Google Scholar 

  15. B. Chow, Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Differential Geom. 22 (1985), 117–138.

    MATH  MathSciNet  Google Scholar 

  16. B. Chow, Deforming convex hypersurfaces by the square root of the scalar curvature, Invent. Math. 87 (1987), 63–82.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Clutterbuck, O. C. Schnürer, F. Schulze, Stability of translating solutions to mean curvature flow, Calc. Var. Partial Differential Equations 29 (2007), 281–293.

    Article  MATH  MathSciNet  Google Scholar 

  18. T. Colding, W. P. Minicozzi, Sharp estimates for mean curvature flow of graphs, J. Reine Angew. Math. 574 (2004), 187–195.

    MATH  MathSciNet  Google Scholar 

  19. P. Daskalopoulos, R. S. Hamilton, The free boundary in the Gauss curvature flow with flat sides, J. Reine Angew. Math. 510 (1999), 187–227.

    MATH  MathSciNet  Google Scholar 

  20. K. Ecker, A local monotonicity formula for mean curvature flow, Ann. of Math. 154 (2001), 503–525.

    Article  MATH  MathSciNet  Google Scholar 

  21. K. Ecker, Regularity Theory for Mean Curvature Flow. Birkhäuser, Boston (2004).

    MATH  Google Scholar 

  22. K. Ecker, G. Huisken, Interior estimates for hypersurfaces moving by mean curvature, Invent. Math. 105 (1991), 547–569.

    Article  MATH  MathSciNet  Google Scholar 

  23. L. C. Evans, J. Spruck, Motion of level sets by mean curvature, I, J. Differential Geom. 33 (1991) 635–681.

    MATH  MathSciNet  Google Scholar 

  24. L. C. Evans, J. Spruck, Motion of level sets by mean curvature, II, Trans. Amer. Math. Soc. 330 (1992) 321–332.

    Article  MATH  MathSciNet  Google Scholar 

  25. W. J. Firey, Shapes of worn stones, Mathematica 21 (1974), 1–11.

    MATH  MathSciNet  Google Scholar 

  26. M. Gage, R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), 69–96.

    MATH  MathSciNet  Google Scholar 

  27. C. Gerhardt, Curvature Problems, International Press, Sommerville, MA (2006).

    MATH  Google Scholar 

  28. Y. Giga, Surface Evolution Equations: A Level Set Approach, Birkhäuser, Basel (2006).

    MATH  Google Scholar 

  29. Y. Giga, S. Goto, Geometric evolution of phase boundaries, in: M. E. Gurtin and G. B. McFadden (eds.), On the Evolution of Phase Boundaries, IMA Volumes in Mathematics and Applications 43, Springer-Verlag, New York (1992).

    Google Scholar 

  30. M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), 285–314.

    MATH  MathSciNet  Google Scholar 

  31. M. A. Grayson, Shortening embedded curves, Ann. of Math. 129 (1989), 71–111.

    Article  MathSciNet  Google Scholar 

  32. M. A. Grayson, A short note on the evolution of a surface by its mean curvature, Duke Math. J. 58 (1989), 555–558.

    Article  MATH  MathSciNet  Google Scholar 

  33. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255–306.

    MATH  MathSciNet  Google Scholar 

  34. R. S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), 153–179.

    MATH  MathSciNet  Google Scholar 

  35. R. S. Hamilton, The Harnack estimate for the mean curvature flow, J. Differential Geom. 41 (1995), 215–226.

    MATH  MathSciNet  Google Scholar 

  36. R. S. Hamilton, Formation of singularities in the Ricci flow, Surveys in Differential Geometry 2 (1995), 7–136, International Press, Boston.

    Google Scholar 

  37. R. S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), 1–92.

    MATH  MathSciNet  Google Scholar 

  38. G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), 237–266.

    MATH  MathSciNet  Google Scholar 

  39. G. Huisken, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math. 84 (1986), 463–480.

    Article  MATH  MathSciNet  Google Scholar 

  40. G. Huisken, Deforming hypersurfaces of the sphere by their mean curvature, Math. Z. 195 (1987), 205–219.

    Article  MATH  MathSciNet  Google Scholar 

  41. G. Huisken, The volume preserving mean curvature flow, J. Reine Angew. Math. 382 (1987) 35–48

    MATH  MathSciNet  Google Scholar 

  42. G. Huisken, Asymptotic behaviour for singularities of the mean curvature flow, J. Differential Geom. 31 (1990), 285–299.

    MATH  MathSciNet  Google Scholar 

  43. G. Huisken, Local and global behaviour of hypersurfaces moving by mean curvature, Proceedings of Symposia in Pure Mathematics 54 (1993), 175–191.

    MathSciNet  Google Scholar 

  44. G. Huisken, T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), 353–437.

    MATH  MathSciNet  Google Scholar 

  45. G. Huisken, A. Polden, Geometric evolution equations for hypersurfaces, in: S. Hidebrandt, M. Struwe (eds.), Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), Springer-Verlag, Berlin, Heidelberg (1999).

    Google Scholar 

  46. G. Huisken, C. Sinestrari, Mean curvature flow singularities for mean convex surfaces, Calc. Variations 8 (1999), 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  47. G. Huisken, C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math. 183 (1999), 45–70.

    Article  MATH  MathSciNet  Google Scholar 

  48. G. Huisken, C. Sinestrari, Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math. 175 (2009), 137–221.

    Article  MATH  MathSciNet  Google Scholar 

  49. T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature. Mem. Amer. Math. Soc., 108 (1994), no. 520

    Google Scholar 

  50. A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser, Basel (1995).

    MATH  Google Scholar 

  51. M. Marcus, L. Lopes, Inequalities for symmetric functions and hermitian matrices, Canad. J. Math. 9 (1957), 305–312.

    MATH  MathSciNet  Google Scholar 

  52. J. A. McCoy, Mixed volume preserving curvature flows, Calc. Variations 24 (2005), 131–154.

    Article  MATH  MathSciNet  Google Scholar 

  53. J. H. Michael, L. M. Simon, Sobolev and mean value inequalities on generalized submanifolds ofn, Comm. Pure Appl. Math., 26 (1973), 361–379.

    Article  MATH  MathSciNet  Google Scholar 

  54. W. W. Mullins Two-dimensional motion of idealised grain boundaries, J. Appl. Phys. 27 (1956), 900–904.

    Article  MathSciNet  Google Scholar 

  55. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint (2002).

    Google Scholar 

  56. G. Perelman, Ricci flow with surgery on three-manifolds, preprint (2003).

    Google Scholar 

  57. O. C. Schnürer, Surfaces contracting with speed |A|2, J. Differential Geom. 71 (2005), 347–363.

    MATH  MathSciNet  Google Scholar 

  58. O. Schnürer, Geometric evolution equations, Lecture notes of the Alpbach Summer School (2007), available on the web page of the author.

    Google Scholar 

  59. F. Schulze, Convexity estimates for flows by powers of the mean curvature (with an appendix by F. Schulze and O. Schnürer), Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2006), 261–277.

    MATH  MathSciNet  Google Scholar 

  60. L. Simon, Lectures on Geometric Measure Theory, Proceedings of the CMA, vol. 3. Australian National University, Canberra (1983).

    Google Scholar 

  61. K. Smoczyk Self-shrinkers of the mean curvature flow in arbitrary codimension, Int. Math. Research Notices 48 (2005), 2983–3004.

    Article  MathSciNet  Google Scholar 

  62. P. E. Souganidis, Front propagation: theory and applications, in: I. Capuzzo Dolcetta and P. L. Lions (eds.), Viscosity Solutions and Applications, Springer-Verlag, Berlin (1997), 186–242.

    Chapter  Google Scholar 

  63. K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math. 38 (1985), 867–882.

    Article  MATH  MathSciNet  Google Scholar 

  64. J. Urbas, An expansion of convex hypersurfaces, J. Differential Geom. 33 (1991), 91–125.

    MATH  MathSciNet  Google Scholar 

  65. M. T. Wang, Mean curvature flow in higher codimension, Proceedings of the Second International Congress of Chinese Mathematicians (2002), available at www.arxiv.org.

    Google Scholar 

  66. M. T. Wang, Some recent developments in Lagrangian mean curvature flows, in: H. D. Cao and S. T. Yau (eds.), Surveys in Differential Geometry, vol. XII, Geometric Flow, International Press, Sommerville (2008).

    Google Scholar 

  67. X. J. Wang, Convex solution to the mean curvature flow, preprint (2004), available at www.arXiv.org.

    Google Scholar 

  68. B. White The nature of singularities in mean curvature flow of mean-convex sets, J. Amer. Math. Soc. 16 (2002), 123–138.

    Article  Google Scholar 

  69. H. Wu, Manifolds of partially positive curvature, Indiana Univ. Math. J. 36 (1987), 525–548.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag

About this chapter

Cite this chapter

Ritoré, M., Sinestrari, C. (2010). Mean curvature flow with surgeries. In: Mean Curvature Flow and Isoperimetric Inequalities. Advanced Courses in Mathematics — CRM Barcelona. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0213-6_11

Download citation

Publish with us

Policies and ethics