Skip to main content

B3 Flow cytometry

  • Chapter
  • First Online:
Principles of Immunopharmacology

Abstract

Various technologies exist for analyzing cells in suspension using optical or electrical interrogation techniques. This chapter focuses on flow cytometers, tools that have optimized fluidics, electronics and optics to generate extraordinary measurement precision and high dimensionality on samples of cells moving through an image plane. Other devices, including scanning cytometers, optical microscopes, and counting devices based on electrical impedance measurements, are outside the scope of this discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4: 648–55

    Article  PubMed  CAS  Google Scholar 

  2. Givan AL. Flow Cytometry: First Principles. Wiley, New York, 2001

    Google Scholar 

  3. Phillips AN, Elford J, Sabin C, Janossy G, Lee CA (1992) Pattern of CD4+ T cell loss in HIV infection. J Acquir Immune Defic Syndr 5: 950–1

    PubMed  CAS  Google Scholar 

  4. Mandy F, Nicholson J, Autran B, Janossy G (2002) T-cell subset counting and the fight against AIDS: reflections over a 20-year struggle. Cytometry 50: 39–45

    Article  PubMed  Google Scholar 

  5. Davis BH, Foucar K, Szczarkowski W, Ball E, Witzig T, Foon KA et al (1997) U.S.-Canadian Consensus recommendations on the immunophenotypic analysis of hematologic neoplasia by flow cytometry: medical indications. Cytometry 30: 249–63

    Article  PubMed  CAS  Google Scholar 

  6. Stewart CC, Behm FG, Carey JL, Cornbleet J, Duque RE, Hudnall SD et al (1997) U.S.-Canadian Consensus recommendations on the immunophenotypic analysis of hematologic neoplasia by flow cytometry: selection of antibody combinations. Cytometry 30: 231–5

    Article  PubMed  CAS  Google Scholar 

  7. Rothe G, Schmitz G (1996) Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies. Working Group on Flow Cytometry and Image Analysis. Leukemia 10: 877–95

    CAS  Google Scholar 

  8. Burchiel SW, Kerkvliet NL, Gerberick GF, Lawrence DA, Ladics GS (1997) Assessment of immunotoxicity by multiparameter flow cytometry. Fundam Appl Toxicol 38: 38–54

    Article  PubMed  CAS  Google Scholar 

  9. Mehta BA, Maino VC (1997) Simultaneous detection of DNA synthesis and cytokine production in staphylococcal enterotoxin B activated CD4+ T lymphocytes by flow cytometry. J Immunol Methods 208: 49–59

    Article  PubMed  CAS  Google Scholar 

  10. Lyons AB, Parish CR (1994) Determination of lymphocyte division by flow cytometry. J Immunol Methods 171: 131–7

    Article  PubMed  CAS  Google Scholar 

  11. Braylan RC, Diamond LW, Powell ML, Harty-Golder B (1980) Percentage of cells in the S phase of the cell cycle in human lymphoma determined by flow cytometry. Cytometry 1: 171–4

    Article  PubMed  CAS  Google Scholar 

  12. Taylor IW, Milthorpe BK (1980) An evaluation of DNA fluorochromes, staining techniques, and analysis for flow cytometry. I. Unperturbed cell populations. J Histochem Cytochem 28: 1224–32

    CAS  Google Scholar 

  13. Darzynkiewicz Z (1994) Simultaneous analysis of cellular RNA and DNA content. Methods Cell Biol 41: 401–20

    Article  PubMed  CAS  Google Scholar 

  14. Perez OD, Mitchell D, Campos R, Gao GJ, Li L, Nolan GP (2005) Multiparameter analysis of intracellular phosphoepitopes in immunophenotyped cell populations by flow cytometry. Curr Protoc Cytom Chapter 6: Unit 6 20

    Google Scholar 

  15. Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud O, Gjertsen BT et al (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118: 217–28

    Article  PubMed  CAS  Google Scholar 

  16. Krutzik PO, Crane JM, Clutter MR, Nolan GP (2008) High-content single-cell drug screening with phosphospecific flow cytometry. Nat Chem Biol 4: 132–42

    Article  PubMed  CAS  Google Scholar 

  17. Cook EB, Stahl JL, Lowe L, Chen R, Morgan E, Wilson J et al (2001) Simultaneous measurement of six cytokines in a single sample of human tears using microparticle-based flow cytometry: allergics vs. nonallergics. J Immunol Methods 254: 109–18

    Article  PubMed  CAS  Google Scholar 

  18. Suni MA, Dunn HS, Orr PL, deLaat R, Sinclair E, Ghanekar SA et al (2003) Performance of plate-based cytokine flow cytometry with automated data analysis. BMC Immunol 4: 9

    Article  PubMed  Google Scholar 

  19. Kelley KW, Lewin HA (1986) Monoclonal antibodies: pragmatic application of immunology and cell biology. J Anim Sci 63: 288–309

    PubMed  CAS  Google Scholar 

  20. Zolla H (1999) High-Sensitivity Immunoflourescence/ Flow Cytomtery: Detection of Cytokine Receptors and Other Low-Abundance Membrane Molecules. In: Robinson JP (ed): Current Protocols in Cytometry. Wiley, New York, Unit 6.3

    Google Scholar 

  21. Chattopadhyay PK, Price DA, Harper TF, Betts MR, Yu J, Gostick E et al (2006) Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat Med 12: 972–7

    Article  PubMed  CAS  Google Scholar 

  22. De Rosa SC, Brenchley JM, Roederer M (2003) Beyond six colors: a new era in flow cytometry. Nat Med 9: 112–7

    Article  PubMed  Google Scholar 

  23. Maecker HT, Frey T, Nomura LE, Trotter J (2004) Selecting fluorochrome conjugates for maximum sensitivity. Cytometry A 62: 169–73

    Article  PubMed  Google Scholar 

  24. McLaughlin BE, Baumgarth N, Bigos M, Roederer M, De Rosa SC, Altman JD et al (2008) Nine-color flow cytometry for accurate measurement of T cell subsets and cytokine responses. Part I: Panel design by an empiric approach. Cytometry A 73: 400–10

    Google Scholar 

  25. Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W (1995) Current Protocols in Immunology. In: Coico R (ed): Current Protocols. Wiley, London

    Google Scholar 

  26. Ruitenberg JJ, Mulder CB, Maino VC, Landay AL, Ghanekar SA (2006) VACUTAINER(R) CPT tM and Ficoll density gradient separation perform equivalently in maintaining the quality and function of PBMC from HIV seropositive blood samples. BMC Immunol 7: 11

    Article  PubMed  Google Scholar 

  27. Nomura LE, Walker JM, Maecker HT (2000) Optimization of whole blood antigen-specific cytokine assays for CD4(+) T cells. Cytometry 40: 60–68

    Article  PubMed  CAS  Google Scholar 

  28. Waldrop SL, Pitcher CJ, Peterson DM, Maino VC, Picker LJ (1997) Determination of antigen-specific memory/ effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J Clin Invest 99: 1739–50

    Article  PubMed  CAS  Google Scholar 

  29. Prussin C, Metcalfe DD (1995) Detection of intracytoplasmic cytokine using flow cytometry and directly conjugated anti-cytokine antibodies. J Immunol Methods 188: 117–28

    Article  PubMed  CAS  Google Scholar 

  30. Suni MA, Picker LJ, Maino VC (1998) Detection of antigen- specific T cell cytokine expression in whole blood by flow cytometry. J Immunol Methods 212: 89–98

    Article  PubMed  CAS  Google Scholar 

  31. Maecker HT, Rinfret A, D’Souza P, Darden J, Roig E, Landry C et al (2005) Standardization of cytokine flow cytometry assays. BMC Immunol 6: 13

    Article  PubMed  Google Scholar 

  32. Seamer L (2001) Data file standard for flow cytometry, FCS 3.0. Current Protocols in Cytometry. Wiley, New York, Chapter 10: Unit 10.2

    Google Scholar 

  33. Nomura LE, Emu B, Hoh R, Haaland P, Deeks SG, Martin JN et al (2006) IL-2 production correlates with effector cell differentiation in HIV-specific CD8+ T cells. AIDS Res Ther 3: 18

    Article  PubMed  Google Scholar 

  34. Drago F, Aragone MG, Lugani C, Rebora A (2000) Cytomegalovirus infection in normal and immunocompromised humans. A review. Dermatology 200: 189–95

    CAS  Google Scholar 

  35. Kern F, Bunde T, Faulhaber N, Kiecker F, Khatamzas E, Rudawski IM et al (2002) Cytomegalovirus (CMV) phosphoprotein 65 makes a large contribution to shaping the T cell repertoire in CMV-exposed individuals. J Infect Dis 185: 1709–16

    Article  PubMed  CAS  Google Scholar 

  36. Maecker HT, Dunn HS, Suni MA, Khatamzas E, Pitcher CJ, Bunde T et al (2001) Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. J Immunol Methods 255: 27–40

    Article  PubMed  CAS  Google Scholar 

  37. Maecker HT, Maino VC, Picker LJ (2000) Immunofluorescence analysis of T-cell responses in health and disease. J Clin Immunol 20: 391–9

    Article  PubMed  CAS  Google Scholar 

  38. Maecker HT, Maino VC (2003) T cell immunity to HIV: defining parameters of protection. Curr HIV Res 1: 249–259

    Article  PubMed  CAS  Google Scholar 

  39. Sindhi R, Allaert J, Gladding D, Koppelman B, Dunne JF (2001) Cytokines and cell surface receptors as target end points of immunosuppression with cyclosporine A. J Interferon Cytokine Res 21: 507–14

    Article  PubMed  CAS  Google Scholar 

  40. Sindhi R, Allaert J, Gladding D, Haaland P, Koppelman B, Dunne J et al (2003) Modeling individual variation in biomarker response to combination immunosuppression with stimulated lymphocyte responses-potential clinical implications. J Immunol Methods 272: 257–72

    Article  PubMed  CAS  Google Scholar 

  41. Altman JD, Moss PAH, Goulder PJR, Barouch DH, McHeyzer-Williams MG, Bell JI et al (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274: 94–6

    Article  PubMed  CAS  Google Scholar 

  42. Brosterhus H, Brings S, Leyendeckers H, Manz RA, Miltenyi S, Radbruch A et al (1999) Enrichment and detection of live antigen-specific CD4(+) and CD8(+) T cells based on cytokine secretion. Eur J Immunol 29: 4053–9

    Article  PubMed  CAS  Google Scholar 

  43. Hutchings PR, Cambridge G, Tite JP, Meager T, Cooke A (1989) The detection and enumeration of cytokinesecreting cells in mice and man and the clinical application of these assays. J Immunol Methods 120: 1–8

    Article  PubMed  CAS  Google Scholar 

  44. Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M et al (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 281: 65–78

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Dunne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Birkhäuser Basel

About this chapter

Cite this chapter

Dunne, J.F., Maecker, H.T. (2011). B3 Flow cytometry. In: Nijkamp, F., Parnham, M. (eds) Principles of Immunopharmacology. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0136-8_14

Download citation

Publish with us

Policies and ethics