Skip to main content

Methods for Extracting Alkalis from Spanish Aggregates

  • Conference paper
  • First Online:
Proceedings of the 17th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR 2024)

Abstract

The release of alkalis from aggregates can be a source of alkalis in concrete that has been exposed to a moist environment for a long time. Several types of aggregates can lixiviate different amounts of alkalis; this depends not only on an aggregate´s mineralogy, but also its shape, that is, if it is a crushed or a naturally abraded aggregate. In concrete production, it is required to estimate the potential amount of alkalis releasable in order to determine the concrete mix proportions. Several solutions and test conditions are used to evaluate aggregate alkali release. The potential alkali release of different Spanish aggregates was assessed in this study utilizing different solutions and test conditions; the effect of the ions’ type, concentration, and temperature in the solution was studied. The main findings of this work were that (1) the ultrapure water extraction method provides an easy and fast way to estimate the potential leachable alkali content from aggregates, and (2) in the method of extraction on concentrated alkaline solutions, reactors at 150 ºC are used; (3) the test times are reduced, allowing a greater extraction of alkalis in less time. To estimate the potential contribution of alkalis from the aggregates in a concrete structure, the more accurate extraction methods are those that partially simulate the concentration of the porosity phase of concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menéndez, M.E.: Análisis del hormigón en estructuras afectadas por reacción árido-álcali, ataque por sulfatos y ciclos de hielo-deshielo /Esperanza Menéndez Méndez. IECA, Madrid (2010)

    Google Scholar 

  2. ACI: Guide to Durable Concrete Reported by ACI Committee 201 (2008)

    Google Scholar 

  3. Soriano, J.: Reactions d’interaction entre certains granulats et la phase instertitielle du beton. In: Maso, J.C. (ed.) Pore Structure and Materials Properties, pp. 25–32. Chapman & Hall Eds London (1987)

    Google Scholar 

  4. Soriano Carrillo, J., Calleja, M.A.G.: Áridos reactivos. Acción del hidróxido cálcico sobre áridos silicatados. In: III Congreso de Geoquímica España, pp. 9–15 (1989)

    Google Scholar 

  5. Figueira, R.B., Sousa, R., Coelho, L., et al.: Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods. Constr. Build Mater. 222, 903–931 (2019). https://doi.org/10.1016/J.CONBUILDMAT.2019.07.230

  6. Diamond, S.: A review of alkali-silica reaction and expansion mechanisms 1. Alkalies in cements and in concrete pore solutions. Cem. Concr. Res. 5, 329–345 (1975). https://doi.org/10.1016/0008-8846(75)90089-7

    Article  Google Scholar 

  7. Diamond, S.: A review of alkali-silica reaction and expansion mechanisms 2. Reactive aggregates. Cem. Concr. Res. 6, 549–560 (1976). https://doi.org/10.1016/0008-8846(76)90083-1

    Article  Google Scholar 

  8. Chatterji, S.: Chemistry of alkali-silica reaction and testing of aggregates. Cem. Concr. Compos. 27, 788–795 (2005). https://doi.org/10.1016/J.CEMCONCOMP.2005.03.005

    Article  Google Scholar 

  9. Garcia-Diaz, E., Riche, J., Bulteel, D., Vernet, C.: Mechanism of damage for the alkali-silica reaction. Cem. Concr. Res. 36, 395–400 (2006). https://doi.org/10.1016/J.CEMCONRES.2005.06.003

    Article  Google Scholar 

  10. Ichikawa, T., Miura, M.: Modified model of alkali-silica reaction. Cem. Concr. Res. 37, 1291–1297 (2007). https://doi.org/10.1016/J.CEMCONRES.2007.06.008

    Article  Google Scholar 

  11. Feng, X., Thomas, M.D.A., Bremner, T.W., et al.: New observations on the mechanism of lithium nitrate against alkali silica reaction (ASR). Cem. Concr. Res. 40, 94–101 (2010). https://doi.org/10.1016/J.CEMCONRES.2009.07.017

    Article  Google Scholar 

  12. Rajabipour, F., Giannini, E., Dunant, C., et al.: Alkali–silica reaction: current understanding of the reaction mechanisms and the knowledge gaps. Cem. Concr. Res. 76, 130–146 (2015). https://doi.org/10.1016/J.CEMCONRES.2015.05.024

    Article  Google Scholar 

  13. Saha, A.K., Khan, M.N.N., Sarker, P.K., et al.: The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: a critical review. Constr. Build. Mater. 171, 743–758 (2018). https://doi.org/10.1016/J.CONBUILDMAT.2018.03.183

    Article  Google Scholar 

  14. Kawabata, Y., Yamada, K.: The mechanism of limited inhibition by fly ash on expansion due to alkali–silica reaction at the pessimum proportion. Cem. Concr. Res. 92, 1–15 (2017). https://doi.org/10.1016/J.CEMCONRES.2016.11.002

    Article  Google Scholar 

  15. Hu, C., Gautam, B.P., Shang, D., et al.: Atomic force microscopy characterisation of alkali-silica reaction products to reveal their nanostructure and formation mechanism. Ceram. Int. 44, 7310–7314 (2018). https://doi.org/10.1016/J.CERAMINT.2018.01.069

    Article  Google Scholar 

  16. Menéndez, E.: Estudio microestructural de productos de reacción álcali-árido en hormigones curados a alta temperatura. Materiales de Construcción 43 (1993). https://doi.org/10.3989/mc.1993.v43.i232.664

  17. Lanza Fernández, V.D.: Estudio de la reactividad álcali-sílice originada por componentes reactivos minoritarios. Universidad Politécnica de Madrid (2012)

    Google Scholar 

  18. Menéndez, E., García-Rovés, R., Aldea, B., Ruíz, S.: Alkali release of aggregates. effectiveness of different solutions and conditions of test. In: 15th ICAAR International Conference on Alkali Aggregates Reaction in Concrete (2016)

    Google Scholar 

  19. Stark, D., Bhatty, M.S.Y.: Alkali-silica reactivity: effect of alkali in aggregate on expansion. Alkalies Concr. 930, 16–30 (1986)

    Article  Google Scholar 

  20. van Aardt, J.H.P., Visser, S.: Calcium hydroxide attack on feldspars and clays: possible relevance to Cement-aggregate reactions. Cem. Concr. Res. 7, 643–648 (1977). https://doi.org/10.1016/0008-8846(77)90046-1

    Article  Google Scholar 

  21. Yujiang, W., Min, D., Mingshu, T.: Alkali release from aggregate and the effect on AAR expansion. Mater. Struct. 41(1), 159–171 (2007). https://doi.org/10.1617/S11527-007-9227-Z

  22. Bérubé, M.A., Duchesne, J., Dorion, J.F., Rivest, M.: A reply to the discussion by Mingshu Tang of the paper “Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali–silica reactivity.” Cem. Concr. Res. 34, 903–904 (2004). https://doi.org/10.1016/J.CEMCONRES.2003.10.001

    Article  Google Scholar 

  23. Menéndez, E., Silva, A.S., Duchesne, J.: Recommendation of RILEM TC 258-AAA: RILEM AAR-8: determination of potential releasable alkalis by aggregates in concrete. Mater. Struct./Materiaux et Constr. 54, 1 (2021). https://doi.org/10.1617/S11527-021-01682-1/FIGURES/4

    Article  Google Scholar 

  24. Menéndez, E., García-Roves, R., Aldea, B., et al.: Study of the alkali-silica reaction rate of Spanish aggregates. Proposal of a classification based in accelerated mortar bars tests and petrographic parameters. Materiales de construcción (Madrid) 71, e263 (2021). https://doi.org/10.3989/mc.2021.13421

  25. Bérubé, M.A., Duchesne, J., Dorion, J.F., Rivest, M.: Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali-silica reactivity. Cem. Concr. Res. 32, 1215–1227 (2002). https://doi.org/10.1016/S0008-8846(02)00766-4

    Article  Google Scholar 

  26. Laboratoire Central des Ponts et Chaussées (LCPC): Essai de granulats - determination des alcalins solubles dans l’eau de chaux. In: 37th edn. Méthode d’essai, Paris (1993)

    Google Scholar 

  27. Longuet, P.: La Phase Liquide du Ciment Hydrate Rev.des Materiaux de Constructions et des Travaux Publics. Ciments et Betons 676, 35–41 (1973)

    Google Scholar 

  28. Bérubé, M.A., Frenette, J., Rivest, M., Vézina, D.: Measurement of the alkali content of concrete using hot-water extraction. Cem. Concr. Aggregates 24, 28–36 (2002). https://doi.org/10.1520/CCA10489J

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esperanza Menéndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Menéndez, E., García-Roves, R., Ortiz, J.E., Barba, C., Recino, H. (2024). Methods for Extracting Alkalis from Spanish Aggregates. In: Sanchez, L.F., Trottier, C. (eds) Proceedings of the 17th International Conference on Alkali-Aggregate Reaction in Concrete. ICAAR 2024. RILEM Bookseries, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-031-59419-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59419-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59418-2

  • Online ISBN: 978-3-031-59419-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics