Skip to main content

U-Net/ResNet-50 Network with Transfer Learning for Semantic Segmentation in Search and Rescue

  • Conference paper
  • First Online:
Robot 2023: Sixth Iberian Robotics Conference (ROBOT 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 978))

Included in the following conference series:

  • 24 Accesses

Abstract

Semantic segmentation has been successfully adopted for scenarios such as indoor, outdoor, urban scenes, and synthetic scenes, but applications with scarce labeled data such as search-and-rescue (SAR), have not been addressed. In this work, we propose a transfer learning approach where the U-Net convolutional neural network incorporates ResNet-50 as an encoder for the segmentation of objects in SAR situations. First, the proposed model is trained and validated with 19 classes of the CityScapes dataset. Then we test the proposed approach by i) training the model with a set of 14 Cityscapes classes with relevant similarities to SAR classes, and ii) using transfer learning with the self-developed dataset in SAR scenarios, which has 349 semantic labeled SAR images. The results indicate good recognition in classes with significant presence on the training images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adla, D., Reddy, G.V.R., Nayak, P., Karuna, G.: A full-resolution convolutional network with a dynamic graph cut algorithm for skin cancer classification and detection. Healthcare Analytics 3, 100,154 (2023). https://doi.org/10.1016/j.health.2023.100154

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017). https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  3. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  4. Cordts, M., et al.: Cityscapes dataset. https://www.cityscapes-dataset.com/benchmarks/#scene-labeling-task

  5. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223 (2016). https://doi.org/10.1109/CVPR.2016.350

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  8. Huang, J., et al.: Quantitative pharmacokinetic parameter ktrans map assists in regional segmentation of nasopharyngeal carcinoma in dynamic contrast-enhanced magnetic resonance imaging (dce-mri). Biome. Signal Process. Control 87, 105,433 (2024). https://doi.org/10.1016/j.bspc.2023.105433

  9. Huang, L., Yuan, Y., Guo, J., Zhang, C., Chen, X., Wang, J.: Interlaced sparse self-attention for semantic segmentation (2019)

    Google Scholar 

  10. Jeon, H.G., et al.: A large-scale virtual dataset and egocentric localization for disaster responses. IEEE Trans. Pattern Anal. Mach. Intell. (2021). https://doi.org/10.1109/TPAMI.2021.3094531

    Article  Google Scholar 

  11. Jurado-Rodríguez, D., Jurado, J.M., Pádua, L., Neto, A., Muñoz-Salinas, R., Sousa, J.J.: Semantic segmentation of 3d car parts using uav-based images. Compu. Graph. 107, 93–103 (2022). https://doi.org/10.1016/j.cag.2022.07.008

  12. Kim, K., Choi, J.Y.: Application of closed-circuit television image segmentation for irrigation channel water level measurement. Water 15(18) (2023). https://doi.org/10.3390/w15183308

  13. Liu, J., Zhou, W., Cui, Y., Yu, L., Luo, T.: Gcnet: grid-like context-aware network for rgb-thermal semantic segmentation. Neurocomputing 506, 60–67 (2022). https://doi.org/10.1016/j.neucom.2022.07.041

  14. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2208–2217 (2017)

    Google Scholar 

  15. Lu, A., Honarvar Shakibaei Asli, B.: Seismic image identification and detection based on tchebichef moment invariant. Electronics 12(17) (2023). https://doi.org/10.3390/electronics12173692

  16. Michieli, U., Biasetton, M., Agresti, G., Zanuttigh, P.: Adversarial learning and self-teaching techniques for domain adaptation in semantic segmentation. IEEE Trans. Intell. Veh. 5(3), 508–518 (2020). https://doi.org/10.1109/TIV.2020.2980671

    Article  Google Scholar 

  17. Morales, J., Vázquez-Martín, R., Mandow, A., Morilla-Cabello, D., García-Cerezo, A.: The UMA-SAR dataset: multimodal data collection from a ground vehicle during outdoor disaster response training exercises. Inter. J. Rob. Res. 40(6–7), 835–847 (2021). https://doi.org/10.1177/02783649211004959

    Article  Google Scholar 

  18. Mottaghi, R., et al.: The role of context for object detection and semantic segmentation in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 891–898 (2014). https://doi.org/10.1109/CVPR.2014.119

  19. Palacios, F., Diago, M.P., Melo-Pinto, P., Tardaguila, J.: Early yield prediction in different grapevine varieties using computer vision and machine learning. Precision Agriculture 24, 407–435 (2023). https://doi.org/10.1007/s11119-022-09950-y

  20. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  21. Sugirtha, T., Sridevi, M.: Semantic segmentation using modified u-net for autonomous driving. In: 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pp. 1–7 (2022). https://doi.org/10.1109/IEMTRONICS55184.2022.9795710

  22. Vianna, P., Farias, R., de Albuquerque Pereira, W.C.: U-net and segnet performances on lesion segmentation of breast ultrasonography images. Res. Biomed. Eng. 37, 171–179 (2021). https://doi.org/10.1007/s42600-021-00137-4

  23. Wang, H., Xu, S., Bin Fang, K., Dai, Z.S., Wei, G.Z., Chen, L.F.: Contrast-enhanced magnetic resonance image segmentation based on improved u-net and inception-resnet in the diagnosis of spinal metastases. J. Bone Oncol. 42, 100,498 (2023) . https://doi.org/10.1016/j.jbo.2023.100498

  24. Yousri, R., Elattar, M.A., Darweesh, M.S.: A deep learning-based benchmarking framework for lane segmentation in the complex and dynamic road scenes. IEEE Access 9, 117,565–117,580 (2021) https://doi.org/10.1109/ACCESS.2021.3106377

  25. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6230–6239 (2017). https://doi.org/10.1109/CVPR.2017.660

  26. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5122–5130 (2017). https://doi.org/10.1109/CVPR.2017.544

  27. Zhou, W., Lv, Y., Lei, J., Yu, L.: Embedded control gate fusion and attention residual learning for rgb-thermal urban scene parsing. IEEE Trans. Intell. Transp. Syst. 24(5), 4794–4803 (2023). https://doi.org/10.1109/TITS.2023.3242651

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España, project PID2021-122944OB-I00. The first author received a grant from Asociación Universitaria Iberoamericana de Postgrado (AUIP), Universidad de Málaga, and Universidad Técnica de Manabí.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Vázquez-Martín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salas-Espinales, A., Vélez-Chávez, E., Vázquez-Martín, R., García-Cerezo, A., Mandow, A. (2024). U-Net/ResNet-50 Network with Transfer Learning for Semantic Segmentation in Search and Rescue. In: Marques, L., Santos, C., Lima, J.L., Tardioli, D., Ferre, M. (eds) Robot 2023: Sixth Iberian Robotics Conference. ROBOT 2023. Lecture Notes in Networks and Systems, vol 978. Springer, Cham. https://doi.org/10.1007/978-3-031-59167-9_21

Download citation

Publish with us

Policies and ethics