Skip to main content

A Quality-Based Criteria for Efficient View Selection

  • Conference paper
  • First Online:
Robotics, Computer Vision and Intelligent Systems (ROBOVIS 2024)

Abstract

The generation of complete 3D models of real-world objects is a well-known problem. The accuracy of a reconstruction can be defined as the fidelity to the original model, but in the context of the 3D reconstruction, the ground truth model is usually unavailable. In this paper, we propose to evaluate the quality of the model through local intrinsic metrics, that reflect the quality of the current reconstruction based on geometric measures of the reconstructed model. We then show how those metrics can be embedded in a Next Best View (NBV) framework as additional criteria for selecting optimal views that improve the quality of the reconstruction. Tests performed on simulated data and synthetic images show that using quality metrics helps the NBV algorithm to focus the view selection on the poor-quality parts of the reconstructed model, thus improving the overall quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcouffe, R., Gasparini, S., Morin, G., Chambon, S.: Blind quality of a 3D reconstructed mesh. In: 29th IEEE International Conference on Image Processing (ICIP 2022), pp. 3406–3410. IEEE, Bordeaux (2022). https://doi.org/10.1109/ICIP46576.2022.9897783

  2. Almadhoun, R., Abduldayem, A., Taha, T., Seneviratne, L., Zweiri, Y.: Guided next best view for 3D reconstruction of large complex structures. Remote Sens. 11(20), 2440 (2019) https://doi.org/10.3390/rs11202440, https://www.mdpi.com/2072-4292/11/20/2440

  3. Borgefors, G.: Distance transformations in arbitrary dimensions. Comput. Vision Graph. Image Process. 27(3), 321–345 (1984). https://doi.org/10.1016/0734-189x(84)90035-5

    Article  Google Scholar 

  4. Community, B.O.: Blender - a 3D modelling and rendering package (2018). http://www.blender.org

  5. Connolly, C.: The determination of next best views. In: IEEE International Conference on Robotics and Automation, ICRA, vol. 2, pp. 432–435 (1985)

    Google Scholar 

  6. Daudelin, J., Campbell, M.: An adaptable, probabilistic, next-best view algorithm for reconstruction of unknown 3-D objects. IEEE Robot. Autom. Lett. (2017). https://doi.org/10.1109/LRA.2017.2660769

    Article  Google Scholar 

  7. Dunn, E., Frahm, J.M.: Next best view planning for active model improvement. In: British Machine Vision Conference, BMVC (2009). https://doi.org/10.5244/C.23.53

  8. Faria, M., Maza, I., Viguria, A.: Applying frontier cells based exploration and lazy Theta* path planning over single grid-based world representation for autonomous inspection of large 3D structures with an UAS. J. Intell. Robot. Syst. (2019). https://doi.org/10.1007/s10846-018-0798-4

    Article  Google Scholar 

  9. Griwodz, C., et al.: AliceVision meshroom: an open-source 3D reconstruction pipeline. In: ACM Multimedia Systems Conference, pp. 241-247 (2021). https://doi.org/10.1145/3458305.3478443

  10. Haner, S., Heyden, A.: Covariance propagation and next best view planning for 3D reconstruction. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 545–556. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_39

    Chapter  Google Scholar 

  11. Hausdorff, F.: Set Theory, 2nd edn. Chelsea Publishing Company (1962)

    Google Scholar 

  12. Jun, C., Shiguang, Z., Xinyu, W.: Structured light-based shape measurement system. Signal Process. 93(6), 1435–1444 (2013)

    Article  Google Scholar 

  13. Lavoué, G.: A multiscale metric for 3D mesh visual quality assessment. Comput. Graph. Forum 30, 1427–1437 (2011). https://doi.org/10.1111/j.1467-8659.2011.02017.x

    Article  Google Scholar 

  14. Lavoué, G., Drelie Gelasca, E., Dupont, F., Baskurt, A., Ebrahimi, T.: Perceptually driven 3D distance metrics with application to watermarking. In: SPIE Optics + Photonics, p. 63120L (2006). https://doi.org/10.1117/12.686964

  15. Lee, I., Seo, J., Kim, Y., Choi, J., Han, S., Yoo, B.: Automatic pose generation for robotic 3-D scanning of mechanical parts. IEEE Trans. Rob. (2020). https://doi.org/10.1109/TRO.2020.2980161

    Article  Google Scholar 

  16. Li, Y., He, B., Bao, P.: Automatic view planning with self-termination in 3D object reconstructions. Sens. Actuat. A: Phys. 122(2) (2005). https://doi.org/10.1016/j.sna.2005.06.003

  17. Massios, N.A., Fisher, R.B.: A best next view selection algorithm incorporating a quality criterion. In: British Machine Vision Conference, BMVC (1998). https://doi.org/10.5244/C.12.78

  18. Maver, J., Bajcsy, R.: Occlusions as a guide for planning the next view. IEEE Trans. Pattern Anal. Mach. Intell. PAMI (1993). https://doi.org/10.1109/34.211463

  19. Mendez, O., Hadfield, S., Pugeault, N., Bowden, R.: Next-best stereo: extending next-best view optimisation for collaborative sensors. In: British Machine Vision Conference, BMVC (2016). https://doi.org/10.5244/C.30.65

  20. Meynet, G., Digne, J., Lavoué, G.: PC-MSDM: a quality metric for 3D point clouds. In: International Conference on Quality of Multimedia Experience, QoMEX (2019). https://doi.org/10.1109/QoMEX.2019.8743313

  21. Mortezapoor, S., Schönauer, C., Rüggeberg, J., Kaufmann, H.: Photogrammabot: an autonomous ROS-based mobile photography robot for precise 3D reconstruction and mapping of large indoor spaces for mixed reality. In: IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW (2022). https://doi.org/10.1109/VRW55335.2022.00033

  22. Nehmé, Y., Dupont, F., Farrugia, J., Le Callet, P., Lavoué, G.: Textured mesh quality assessment: large-scale dataset and deep learning-based quality metric. ACM Trans. Graph. (2023). https://doi.org/10.1145/3592786

  23. Pan, S., Wei, H.: A global max-flow-based multi-resolution next-best-view method for reconstruction of 3D unknown objects. IEEE Robot. Autom. Lett. (2022). https://doi.org/10.1109/LRA.2021.3132430

    Article  Google Scholar 

  24. Rodríguez-Cuenca, B., García-Cortés, S., Ordóñez, C., Alonso, M.C.: A study of the roughness and curvature in 3D point clouds to extract vertical and horizontal surfaces. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS, pp. 4602–4605 (2015). https://doi.org/10.1109/IGARSS.2015.7326853

  25. Roldao, L., de Charette, R., Verroust-Blondet, A.: 3D surface reconstruction from voxel-based lidar data. In: IEEE Intelligent Transportation Systems Conference, ITSC, pp. 2681–2686 (2019). https://doi.org/10.1109/ITSC.2019.8916881

  26. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2016)

    Google Scholar 

  27. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 519–528 (2006)

    Google Scholar 

  28. Selin, M., Tiger, M., Duberg, D., Heintz, F., Jensfelt, P.: Efficient autonomous exploration planning of large-scale 3-D environments. IEEE Robot. Autom. Lett. (2019). https://doi.org/10.1109/LRA.2019.2897343

    Article  Google Scholar 

  29. Tachella, J., et al.: Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers. Nat. Commun. 10(1), 4984 (2019). https://doi.org/10.1038/s41467-019-12943-7

    Article  MathSciNet  Google Scholar 

  30. Tingdahl, D., Van Gool, L.: A public system for image based 3D model generation. In: International Conference on Computer Vision/Computer Graphics Collaboration Techniques and Applications, MIRAGE, vol. 6930/2011, pp. 262–273 (2011)

    Google Scholar 

  31. Váša, L., Rus, J.: Dihedral angle mesh error: a fast perception correlated distortion measure for fixed connectivity triangle meshes. Comput. Graph. Forum 31(5), 1715–1724 (2012)

    Article  Google Scholar 

  32. Wenhardt, S., Deutsch, B., Angelopoulou, E., Niemann, H.: Active visual object reconstruction using d-, e-, and t-optimal next best views. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2007). https://doi.org/10.1109/CVPR.2007.383363

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Alcouffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alcouffe, R., Chambon, S., Morin, G., Gasparini, S. (2024). A Quality-Based Criteria for Efficient View Selection. In: Filipe, J., Röning, J. (eds) Robotics, Computer Vision and Intelligent Systems. ROBOVIS 2024. Communications in Computer and Information Science, vol 2077. Springer, Cham. https://doi.org/10.1007/978-3-031-59057-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59057-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59056-6

  • Online ISBN: 978-3-031-59057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics