Skip to main content

A Feasibility Study of a Leader-Follower Multi-robot Formation for TDLAS Assisted Methane Detection in Open Spaces

  • Conference paper
  • First Online:
Robot 2023: Sixth Iberian Robotics Conference (ROBOT 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 976))

Included in the following conference series:

  • 10 Accesses

Abstract

This work deals with the problem of detecting and localizing methane emission sources in open spaces with a mobile robot equipped with a remote gas detector (TDLAS). To reduce the long inspection time of traditional approaches which use the ground as the natural reflector, in this work, we analyze the feasibility of a leader-follower formation, where one robot, the leader, carries the remote gas detector that scans horizontally, parallel to the ground, and a second robot, the follower, that acts as an artificial reflector. We present a visual tracking mechanism for the relative pose estimation of both mobile platforms to extend the measurement range up to 10 m. Results in a 70 \(m^2\) experimental area demonstrate that this approach is effective for a fast location of methane gas sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arain, M.A., Hernandez Bennetts, V., Schaffernicht, E., Lilienthal, A.J.: Sniffing out fugitive methane emissions: autonomous remote gas inspection with a mobile robot. Int. J. Robot. Res. 40(4–5), 782–814 (2021). https://doi.org/10.1177/0278364920954907

    Article  Google Scholar 

  2. Bennetts, V.H., Schaffernicht, E., Stoyanov, T., Lilienthal, A.J. and Trincavelli, M.: Robot assisted gas tomography - localizing methane leaks in outdoor environments. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6362–6367 (2014). https://doi.org/10.1109/ICRA.2014.6907798

  3. Byer, R.L., Shepp, L.A.: Two-dimensional remote air-pollution monitoring via tomography. Optics Lett. 4(3), 75–77 (1979). https://doi.org/10.1364/OL.4.000075

    Article  Google Scholar 

  4. Chen, X., Vizzo, I., Läbe, T., Behley, J., Stachniss, C.: Range image-based lidar localization for autonomous vehicles. In: IEEE Int. Conf. Robot. Autom. (ICRA)., 5802–5808 (2021.) https://doi.org/10.1109/ICRA48506.2021.9561335

  5. Corbett, A., Smith, B.: A study of a miniature TDLAS system onboard two unmanned aircraft to independently quantify methane emissions from oil and gas production assets and other industrial emitters. Atmosphere 13(5), 804 (2022). https://doi.org/10.3390/atmos13050804

    Article  Google Scholar 

  6. Feng, S., et al.: Review on smart gas sensing technology. Sensors (Switzerland) 19(17), 1–22 (2019). https://doi.org/10.3390/s19173760

    Article  Google Scholar 

  7. Gålfalk, M., Nilsson Påledal, S., Bastviken, D.: Sensitive drone mapping of methane emissions without the need for supplementary ground-based measurements. ACS Earth Space Chem. 5(10), 2668–2676 (2021). https://doi.org/10.1021/acsearthspacechem.1c00106

  8. Gongora, A., Monroy, J., Gonzalez-Jimenez, J.: Joint estimation of gas & wind maps for fast-response applications. Appl. Math. Model. (2020). https://doi.org/10.1016/j.apm.2020.06.026

    Article  MathSciNet  Google Scholar 

  9. Jiang, J., et al.: TDLAS-based detection of dissolved methane in power transformer oil and field application. IEEE Sens. J. 18(6), 2318–2325 (2018). https://doi.org/10.1109/JSEN.2017.2788871

    Article  Google Scholar 

  10. Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial markers for pose estimation: overview, applications and experimental comparison of the ARtag, AprilTag, ArUco and STag markers. J. Intell. Robot. Syst. 101, 1–26 (2021). https://doi.org/10.1007/s10846-020-01307-9

    Article  Google Scholar 

  11. Li, F., Cai, H., Jiheng, X., Zhang, K., Feng, Q., Wang, H.: Gas distribution mapping for indoor environments based on laser absorption spectroscopy: development of an improved tomographic algorithm. Build. Environ. 172, 106724 (2020). https://doi.org/10.1016/j.buildenv.2020.106724

    Article  Google Scholar 

  12. Madhavan, R., Fregene, K., Parker, L.E.: Distributed heterogeneous outdoor multi-robot localization. In: IEEE Int. Conf. Robot. Autom. (ICRA), vol. 1, pp. 374–381 (2002). https://doi.org/10.1109/ROBOT.2002.1013389

  13. Monroy, J., Blanco, J.-L., Gonzalez-Jimenez, J.: Time-variant gas distribution mapping with obstacle information. Auton. Robot. 40(1), 1–16 (2016). https://doi.org/10.1007/s10514-015-9437-0

    Article  Google Scholar 

  14. Mønster, J., Kjeldsen, P., Scheutz, C.: Methodologies for measuring fugitive methane emissions from landfills - a review. Waste Manage. 87, 835–859 (2019). https://doi.org/10.1016/j.wasman.2018.12.047

    Article  Google Scholar 

  15. Neumann, P.P., Kohlhoff, H., Hüllmann, D., Lilienthal, A.J., Kluge, M.: Bringing mobile robot olfaction to the next dimension - UAV-based remote sensing of gas clouds and source localization. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3910–3916 (2017). https://doi.org/10.1109/ICRA.2017.7989450

  16. Themelis, N.J., Ulloa, P.A.: Methane generation in landfills. Renewable Energy 32(7), 1243–1257 (2007). https://doi.org/10.1016/j.renene.2006.04.020

    Article  Google Scholar 

  17. Weiss, C., Tamimi, H., Masselli, A., Zell, A.: A hybrid approach for vision-based outdoor robot localization using global and local image features. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1047–1052 (2007). https://doi.org/10.1109/IROS.2007.4398959

Download references

Acknowledgements

This work was funded by the research projects HOUNDBOT (P20_01302) from Andalusia Regional Government, and (UMA20-FEDERJA-056), both funding by the European Regional Development FundERDF and by the grant for the formation of pre-doctoral researchers in Andalusia (24653).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Monroy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Monroy, J., Ojeda, P., Gonzalez-Jimenez, J. (2024). A Feasibility Study of a Leader-Follower Multi-robot Formation for TDLAS Assisted Methane Detection in Open Spaces. In: Marques, L., Santos, C., Lima, J.L., Tardioli, D., Ferre, M. (eds) Robot 2023: Sixth Iberian Robotics Conference. ROBOT 2023. Lecture Notes in Networks and Systems, vol 976. Springer, Cham. https://doi.org/10.1007/978-3-031-58676-7_15

Download citation

Publish with us

Policies and ethics