Skip to main content

Adaptive Prototype Triplet Loss for Cross-Resolution Face Recognition

  • Conference paper
  • First Online:
Intelligent Information Processing XII (IIP 2024)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 704))

Included in the following conference series:

  • 34 Accesses

Abstract

Although face recognition has achieved great success in many areas, cross-resolution face recognition (CRFR) still remains a challenging task due to the large domain gap between low-resolution (LR) and high-resolution (HR) images. In this paper, we propose an adaptive prototype triplet loss (APTL) for CRFR. The APTL pulls the features close to their own prototypes, and pushes them away from the prototypes of other classes. Thus, the angular distances between features and prototypes from the same class are closer than those from different classes. Furthermore, to better exploit the similarity information among different identities, we adaptively adjust the margin term in the loss. Since the proposed APTL is applied simultaneously to HR and LR features, the gap between two domains can be narrowed naturally. Experiments on LFW and SCface datasets illustrate the superiority of our method.

Y. Chen and W. Zheng—Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Boom, B.J., Beumer, G.M., Spreeuwers, L.J., Veldhuis, R.N.J.: The effect of image resolution on the performance of a face recognition system. In: 2006 9th International Conference on Control, Automation, Robotics and Vision, pp. 1–6. IEEE (2006)

    Google Scholar 

  2. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2017)

    Google Scholar 

  3. Chen, Y., Tai, Y., Liu, X., Shen, C., Yang, J.: FSRNet: end-to-end learning face super-resolution with facial priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2492–2501 (2018)

    Google Scholar 

  4. Cheng, X., Jiwen, L., Yuan, B., Zhou, J.: Face segmentor-enhanced deep feature learning for face recognition. IEEE Trans. Biom. Behav. Ident. Sci. 1(4), 223–237 (2019)

    Article  Google Scholar 

  5. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  6. Farrugia, R.A., Guillemot, C.: Face hallucination using linear models of coupled sparse support. IEEE Trans. Image Process. 26(9), 4562–4577 (2017)

    Article  MathSciNet  Google Scholar 

  7. Fu, T.-C., Chiu, W.-C., Frank Wang, Y.-C.: Learning guided convolutional neural networks for cross-resolution face recognition. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–5. IEEE (2017)

    Google Scholar 

  8. Gao, G., Yang, J.: A novel sparse representation based framework for face image super-resolution. Neurocomputing 134, 92–99 (2014)

    Article  Google Scholar 

  9. Ge, S., Zhao, S., Li, C., Li, J.: Low-resolution face recognition in the wild via selective knowledge distillation. IEEE Trans. Image Process. 28(4), 2051–2062 (2018)

    Article  MathSciNet  Google Scholar 

  10. Ghosh, S., Singh, R., Vatsa, M.: On learning density aware embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4884–4892 (2019)

    Google Scholar 

  11. Ghosh, S., Singh, R., Vatsa, M.: Subclass heterogeneity aware loss for cross-spectral cross-resolution face recognition. IEEE Trans. Biom. Behav. Ident. Sci. 2(3), 245–256 (2020)

    Article  Google Scholar 

  12. Grgic, M., Delac, K., Grgic, S.: SCFace-surveillance cameras face database. Multimed. Tools App. 51(3), 863–879 (2011)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  15. Xiao, H., Peng, S., Wang, L., Yang, Z., Li, Z.: Surveillance video face recognition with single sample per person based on 3d modeling and blurring. Neurocomputing 235, 46–58 (2017)

    Article  Google Scholar 

  16. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database Forstudying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)

    Google Scholar 

  17. Reza Khazaie, V., Bayat, N., Mohsenzadeh, Y.: Multi scale identity-preserving image-to-image translation network for low-resolution face recognition. arXiv preprint arXiv:2010.12249 (2020)

  18. Ze, L., Jiang, X., Kot, A.: Deep coupled resnet for low-resolution face recognition. IEEE Signal Process. Lett. 25(4), 526–530 (2018)

    Article  Google Scholar 

  19. Valerio Massoli, F., Amato, G., Falchi, F.: Cross-resolution learning for face recognition. Image Vision Comput. 99, 103927 (2020)

    Article  Google Scholar 

  20. Mudunuri, S.P., Biswas, S.: Low resolution face recognition across variations in pose and illumination. IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 1034–1040 (2015)

    Article  Google Scholar 

  21. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  22. Shi, J., Qi, C.: From local geometry to global structure: learning latent subspace for low-resolution face image recognition. IEEE Signal Process. Lett. 22(5), 554–558 (2014)

    Article  Google Scholar 

  23. Sun, J., Shen, Y., Yang, W., Liao, Q.: Classifier shared deep network with multi-hierarchy loss for low resolution face recognition. Signal Process. Image Commun. 82, 115766 (2020)

    Article  Google Scholar 

  24. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)

    Google Scholar 

  25. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  26. Yang, F., Yang, W., Gao, R., Liao, Q.: Discriminative multidimensional scaling for low-resolution face recognition. IEEE Signal Process. Lett. 25(3), 388–392 (2017)

    Article  Google Scholar 

  27. Yang, M.-C., Wei, C.-P., Yeh, Y.-R., Frank Wang, Y.-C.: Recognition at a long distance: very low resolution face recognition and hallucination. In: 2015 International Conference on Biometrics (ICB), pp. 237–242. IEEE (2015)

    Google Scholar 

  28. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)

  29. Yin, X., Tai, Y., Huang, Y., Liu, X.: Fan: feature adaptation network for surveillance face recognition and normalization. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  30. Zeng, D., Chen, H., Zhao, Q.: Towards resolution invariant face recognition in uncontrolled scenarios. In: 2016 International conference on biometrics (ICB), pp. 1–8. IEEE (2016)

    Google Scholar 

  31. Zha, J., Chao, H.: TCN: transferable coupled network for cross-resolution face recognition. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3302–3306. IEEE (2019)

    Google Scholar 

  32. Zhang, J., Guo, Z., Li, X., Chen, Y.: Large margin coupled mapping for low resolution face recognition. In: Booth, R., Zhang, M.-L. (eds.) PRICAI 2016. LNCS (LNAI), vol. 9810, pp. 661–672. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42911-3_55

    Chapter  Google Scholar 

  33. Zhang, K., et al.: Super-identity convolutional neural network for face hallucination. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 196–211. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_12

    Chapter  Google Scholar 

  34. Zhang, K., Zhang, Z., Li, Z., Qiao, Yu.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  35. Zhang, L., et al.: ArFace: attention-aware and regularization for face recognition with reinforcement learning. IEEE Trans. Biom. Behav. Ident. Sci. 4(1), 30–42 (2022)

    Article  Google Scholar 

  36. Zou, W.W.W., Yuen, P.C.: Very low resolution face recognition problem. IEEE Trans. Image Process. 21(1), 327–340 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Special Foundations for the Development of Strategic Emerging Industries of Shenzhen

(Nos. KJZD20231023094700001 & CJGJZD20210408092804011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y. et al. (2024). Adaptive Prototype Triplet Loss for Cross-Resolution Face Recognition. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 704. Springer, Cham. https://doi.org/10.1007/978-3-031-57919-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57919-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57918-9

  • Online ISBN: 978-3-031-57919-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics