Skip to main content

Early Anomaly Detection in Hydraulic Pumps Based on LSTM Traffic Prediction Model

  • Conference paper
  • First Online:
Intelligent Information Processing XII (IIP 2024)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 704))

Included in the following conference series:

  • 29 Accesses

Abstract

Hydraulic pumps, vital in modern industrial equipment, face the challenge of direct flow rate measurement due to their intricate internal structures. Consequently, devising predictive methods for the main pump flow is crucial for early anomaly detection and efficient maintenance. This paper introduces a predictive method for hydraulic pump flow based on Long Short-Term Memory networks (LSTM), known for their robust handling of temporal data. Utilizing LSTM, the method predicts flow rates, which are then employed to compute the volumetric efficiency under steady rotational conditions, thus evaluating the pump’s operational status. The proposed model’s experimental validation, marked by a low mean square error in flow prediction, attests to its efficacy. Moreover, the derived average volumetric efficiency value of 0.97 serves as a reliable indicator for identifying potential anomalies in hydraulic pump performance.

This work was supported in part by the Fundamental Research Fundsfor the Central Universities under Grant 2019ZDPY08.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wang, X., Yan, H., Zheng, S.: Online prediction and health management of hydraulic pump life. J. Beijing Inst. Technol. 37(10), 1024–1030 (2017)

    Google Scholar 

  2. Jin, Y., Guo, H., Wang, J., et al.: A hybrid system based on LSTM for short-term power load forecasting. Energies 13(23), 6241 (2020)

    Article  Google Scholar 

  3. Wei, B., Hu, H., Wang, K., et al.: Research on traction load forecasting method for high-speed railway traction substation based on measured data and train timetable. Trans. China Electrotech. Soc. 35(1), 179–188 (2020)

    Google Scholar 

  4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  5. Graves, A.: Long Short-term Memory, pp. 1735–1780. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-24797-2_4

    Book  Google Scholar 

  6. Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video representations using LSTMs. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 843–852. JMLR W &CP, Lille (2015)

    Google Scholar 

  7. Donahue, J., Hendricks, L.A., Rohrbach, M., et al.: Long-term recurrent convolutional networks for visual recognition and description. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 677–691 (2015)

    Article  Google Scholar 

  8. Vinyals, O., Toshev, A., Bengio, S., et al.: Show and tell: a neural image caption generator. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164. IEEE Press, Piscataway (2015)

    Google Scholar 

  9. Ma, X., Tao, Z., Wang, Y., et al.: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. C Emerg. Technol. 54, 187–197 (2015)

    Article  Google Scholar 

  10. Hanson, J., Yang, Y., Paliwal, K., et al.: Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks. Bioinformatics 33(5), 685 (2017)

    Article  Google Scholar 

  11. Tottn, G.E.: Handbook of Hydraulic Fluid Technology. Marcel Dekker, New York (2000)

    Google Scholar 

  12. Esposito, A.: Fluid Power with Applications. Prentice-Hall Inc, Englewood Cliffs (1980)

    Google Scholar 

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 8, 1735–1780 (1997)

    Article  Google Scholar 

  14. Zhang, C., Zhao, S., He, Y.: Health estimation method of lithium battery pack based on information entropy and PSO-LSTM. J. Mech. Eng. 58(10), 180–190 (2022)

    Article  Google Scholar 

  15. Wen, B., Dong, W., Xie, W., Ma, J.: Parameter optimization of random forest based on improved grid search algorithm. J. Comput. Eng. Appl. 54(10), 154–157 (2018)

    Google Scholar 

  16. Wang, J., Zhang, L., Chen, G., He, X.: Parameter optimization of SVM based on improved grid search method. Appl. Sci. Technol. 39(03), 28–31 (2012)

    Google Scholar 

  17. Wang, X., Li, Z.: Determination of support vector machine kernel function parameters based on grid search. J. Ocean Univ. China (Nat. Sci. Edn.) 05, 859–862 (2005)

    Google Scholar 

  18. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 5, pp. 4027–4035 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, J., Wang, Y., Wen, J., Zhang, B., Li, W. (2024). Early Anomaly Detection in Hydraulic Pumps Based on LSTM Traffic Prediction Model. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 704. Springer, Cham. https://doi.org/10.1007/978-3-031-57919-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57919-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57918-9

  • Online ISBN: 978-3-031-57919-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics