Skip to main content

HaarNet: Large-Scale Linear-Morphological Hybrid Network for RGB-D Semantic Segmentation

  • Conference paper
Discrete Geometry and Mathematical Morphology (DGMM 2024)

Abstract

Signals from different modalities each have their own combination algebra which affects their sampling processing. RGB is mostly linear; depth is a geometric signal following the operations of mathematical morphology. If a network obtaining RGB-D input has both kinds of operators available in its layers, it should be able to give effective output with fewer parameters. In this paper, morphological elements in conjunction with more familiar linear modules are used to construct a mixed linear-morphological network called HaarNet. This is the first large-scale linear-morphological hybrid, evaluated on a set of sizeable real-world datasets. In the network, morphological Haar sampling is applied to both feature channels in several layers, which splits extreme values and high-frequency information such that both can be processed to improve both modalities. Moreover, morphologically parameterised ReLU is used, and morphologically-sound up-sampling is applied to obtain a full-resolution output. Experiments show that HaarNet is competitive with a state-of-the-art CNN, implying that morphological networks are a promising research direction for geometry-based learning tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Armeni, I., Sax, S., Zamir, A.R., Savarese, S.: Joint 2d-3d-semantic data for indoor scene understanding. arXiv preprint arXiv:1702.01105 (2017)

  2. Burgeth, B., Weickert, J.: An explanation for the logarithmic connection between linear and morphological system theory. IJCV 64, 157–169 (2005)

    Article  Google Scholar 

  3. Charisopoulos, V., Maragos, P.: Morphological perceptrons: geometry and training algorithms. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57240-6_1

    Chapter  Google Scholar 

  4. Chen, B., Polatkan, G., Sapiro, G., Blei, D., Dunson, D., Carin, L.: Deep learning with hierarchical convolutional factor analysis. TPAMI 35(8), 1887–1901 (2013)

    Article  Google Scholar 

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI 40(4), 834–848 (2017)

    Article  Google Scholar 

  6. Chen, S., Zhu, X., Liu, W., He, X., Liu, J.: Global-local propagation network for RGB-D semantic segmentation. arXiv preprint arXiv:2101.10801 (2021)

  7. Chen, X., et al.: Bi-directional cross-modality feature propagation with separation-and-aggregation gate for RGB-D semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 561–577. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_33

    Chapter  Google Scholar 

  8. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  9. Csurka, G., Larlus, D., Perronnin, F., Meylan, F.: What is a good evaluation measure for semantic segmentation? TPAMI 26(1) (2004)

    Google Scholar 

  10. Dimitriadis, N., Maragos, P.: Advances in the training, pruning and enforcement of shape constraints of morphological neural networks using tropical algebra. arXiv preprint arXiv:2011.07643 (2020)

  11. Franchi, G., Fehri, A., Yao, A.: Deep morphological networks. Pattern Recogn. 102, 107246 (2020)

    Article  Google Scholar 

  12. Fukushima, K.: Cognitron: a self-organizing multilayered neural network. Biol. Cybern. 20(3–4), 121–136 (1975)

    Article  Google Scholar 

  13. Groenendijk, R., Dorst, L., Gevers, T.: Morphpool: efficient non-linear pooling & unpooling in CNNs. In: 33rd British Machine Vision Conference 2022, BMVC 2022, London, UK, November 21-24, 2022. BMVA Press (2022)

    Google Scholar 

  14. Groenendijk, R., Dorst, L., Gevers, T.: Geometric back-propagation in morphological neural networks. TPAMI, pp. 1–8 (2023)

    Google Scholar 

  15. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345–360. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_23

    Chapter  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR. pp. 770–778 (2016)

    Google Scholar 

  17. Heijmans, H.J., Goutsias, J.: Nonlinear multiresolution signal decomposition schemes. ii. morphological wavelets. TIP 9(11), 1897–1913 (2000)

    MathSciNet  Google Scholar 

  18. Heijmans, H.J., Toet, A.: Morphological sampling. CVGIP: Image understanding 54(3), 384–400 (1991)

    Article  Google Scholar 

  19. Hernández, G., Zamora, E., Sossa, H., Téllez, G., Furlán, F.: Hybrid neural networks for big data classification. Neurocomputing 390, 327–340 (2020)

    Article  Google Scholar 

  20. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  21. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: ICCV, pp. 2146–2153. IEEE (2009)

    Google Scholar 

  22. Jiang, S., Xu, Y., Li, D., Fan, R.: Multi-scale fusion for RGB-D indoor semantic segmentation. Sci. Rep. 12(1), 20305 (2022)

    Article  Google Scholar 

  23. Mondal, R., Santra, S., Mukherjee, S.S., Chanda, B.: Morphological network: How far can we go with morphological neurons? In: BMVC. BMVA Press (2022)

    Google Scholar 

  24. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeuRIPS, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  25. Qiu, S., Xu, X., Cai, B.: Frelu: flexible rectified linear units for improving convolutional neural networks. In: ICPR. pp. 1223–1228. IEEE (2018)

    Google Scholar 

  26. Ritter, G.X., Sussner, P.: An introduction to morphological neural networks. In: ICPR, vol. 4, pp. 709–717. IEEE (1996)

    Google Scholar 

  27. Roy, S.K., Mondal, R., Paoletti, M.E., Haut, J.M., Plaza, A.: Morphological convolutional neural networks for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 14, 8689–8702 (2021)

    Article  Google Scholar 

  28. Serra, J.: Image analysis and mathematical morphology (1983)

    Google Scholar 

  29. Serra, J., Vincent, L.: An overview of morphological filtering. Circ. Syst. Signal Process. 11(1), 47–108 (1992)

    Article  MathSciNet  Google Scholar 

  30. Shen, Y., Shih, F.Y., Zhong, X., Chang, I.C.: Deep morphological neural networks. PRAI 36(12), 2252023 (2022)

    Google Scholar 

  31. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  32. Sussner, P.: Morphological perceptron learning. In: Proceedings of the 1998 ISIC/CIRA, pp. 477–482. IEEE (1998)

    Google Scholar 

  33. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: ICML, pp. 1139–1147. PMLR (2013)

    Google Scholar 

  34. Velasco-Forero, S., Angulo, J.: Morphoactivation: generalizing ReLU activation function by mathematical morphology. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds.) DGMM 2022. LNCS, vol. 13493, pp. 449–461. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19897-7_35

    Chapter  Google Scholar 

  35. Velasco-Forero, S., Rhim, A., Angulo, J.: Fixed point layers for geodesic morphological operations. In: BMVC. BMVA Press (2022)

    Google Scholar 

  36. Xie, L., Tian, Q., Wang, M., Zhang, B.: Spatial pooling of heterogeneous features for image classification. TIP 23(5), 1994–2008 (2014)

    MathSciNet  Google Scholar 

  37. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? NeuRIPS 27 (2014)

    Google Scholar 

  38. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  39. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: ICCV, pp. 2018–2025. IEEE (2011)

    Google Scholar 

  40. Zhou, H., Qi, L., Huang, H., Yang, X., Wan, Z., Wen, X.: CANet: Co-attention network for RGB-D semantic segmentation. Pattern Recogn. 124, 108468 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick Groenendijk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Groenendijk, R., Dorst, L., Gevers, T. (2024). HaarNet: Large-Scale Linear-Morphological Hybrid Network for RGB-D Semantic Segmentation. In: Brunetti, S., Frosini, A., Rinaldi, S. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2024. Lecture Notes in Computer Science, vol 14605. Springer, Cham. https://doi.org/10.1007/978-3-031-57793-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57793-2_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57792-5

  • Online ISBN: 978-3-031-57793-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics