Skip to main content

STARS: A Tool for Measuring Scenario Coverage When Testing Autonomous Robotic Systems

  • Conference paper
  • First Online:
Dependable Computing – EDCC 2024 Workshops (EDCC 2024)

Abstract

Extensive testing and simulation in different environments has been suggested as one piece of evidence for the safety of autonomous systems, e.g., in the automotive domain. To enable statements on the absolute number or fractions of tested scenarios, methods and tools for computing their coverage are needed. In this paper, we present STARS, a tool for specifying semantic environment features and measuring scenario coverage when testing autonomous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/tudo-aqua/stars.

  2. 2.

    Note: The data model used for the evaluation of the TSCs is described in [17].

References

  1. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Standard J3016, SAE International (2021). https://www.sae.org/standards/content/j3016_202104/

  2. Standard for safety for the evaluation of autonomous products. Standard ANSI/UL 4600-2023, UL Standards & Engagement (2023). https://ul.org/UL4600

  3. Amersbach, C., Winner, H.: Defining required and feasible test coverage for scenario-based validation of highly automated vehicles. In: ITSC 2019, IEEE (2019). https://doi.org/10.1109/itsc.2019.8917534

  4. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: PMLR 2017, vol. 78. PMLR (2017). https://proceedings.mlr.press/v78/dosovitskiy17a.html

  5. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0 — a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8

    Chapter  Google Scholar 

  6. Esterle, K., Gressenbuch, L., Knoll, A.C.: Formalizing traffic rules for machine interpretability. In: CAVS 2020, IEEE (2020). https://doi.org/10.1109/CAVS51000.2020.9334599

  7. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. (IJRR) 32(11), 1231–1237 (2013). https://doi.org/10.1177/0278364913491297

    Article  Google Scholar 

  8. Hildebrandt, C., von Stein, M., Elbaum, S.: PhysCov: physical test coverage for autonomous vehicles. In: ISSTA 2023, ACM (2023). https://doi.org/10.1145/3597926.3598069

  9. Huck, T.P., Ledermann, C., Kröger, T.: Simulation-based testing for early safety-validation of robot systems. In: SPCE 2020, IEEE (2020). https://doi.org/10.1109/SPCE50045.2020.9296157

  10. ISO central secretary: road vehicles - safety of the intended functionality. Standard ISO 21448:2022, International Organization for Standardization (2022). https://www.iso.org/standard/77490.html

  11. Jenkins, I.R., Gee, L.O., Knauss, A., Yin, H., Schroeder, J.: Accident scenario generation with recurrent neural networks. In: ITSC 2018, IEEE (2018). https://doi.org/10.1109/itsc.2018.8569661

  12. Li, C., Cheng, C.H., Sun, T., Chen, Y., Yan, R.: ComOpT: combination and optimization for testing autonomous driving systems. In: ICRA 2022, IEEE (2022). https://doi.org/10.1109/icra46639.2022.9811794

  13. Majumdar, R., Mathur, A., Pirron, M., Stegner, L., Zufferey, D.: Paracosm: a language and tool for testing autonomous driving systems. Technical Report arXiv:1902.01084, arXiv (2021). https://doi.org/10.48550/arXiv.1902.01084

  14. Mariani, R.: An overview of autonomous vehicles safety. In: IRPS 2018, IEEE (2018). https://doi.org/10.1109/irps.2018.8353618

  15. Porres, I., Azimi, S., Lilius, J.: Scenario-based testing of a ship collision avoidance system. In: SEAA 2020, IEEE (2020). https://doi.org/10.1109/SEAA51224.2020.00090

  16. Rizaldi, A., et al.: Formalising and monitoring traffic rules for autonomous vehicles in Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 50–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_4

    Chapter  Google Scholar 

  17. Schallau, T., Naujokat, S.: Validating behavioral requirements, conditions, and rules of autonomous systems with scenario-based testing. Electron Communications of the EASST 82 (2023). https://doi.org/10.14279/tuj.eceasst.82.1222

  18. Schallau, T., Naujokat, S., Kullmann, F., Howar, F.: Tree-based scenario classification: a formal framework for coverage analysis on test drives of autonomous vehicles. Technical Report arXiv:2307.05106, arXiv (2023). https://doi.org/10.48550/arXiv.2307.05106, submitted to NFM 2024

  19. Schmidt, T., Hauer, F., Pretschner, A.: Understanding safety for unmanned aerial vehicles in urban environments. In: IV 2021, IEEE (2021). https://doi.org/10.1109/IV48863.2021.9575755

  20. Weber, H., et al.: A framework for definition of logical scenarios for safety assurance of automated driving. Traffic Injury Prev. 20(sup1) (2019). https://doi.org/10.1080/15389588.2019.1630827

  21. Weng, B., Capito, L., Ozguner, U., Redmill, K.: Towards guaranteed safety assurance of automated driving systems with scenario sampling: an invariant set perspective. IEEE Trans. Intell. Veh. 7(3) (2022). https://doi.org/10.1109/tiv.2021.3117049

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Schallau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schallau, T., Mäckel, D., Naujokat, S., Howar, F. (2024). STARS: A Tool for Measuring Scenario Coverage When Testing Autonomous Robotic Systems. In: Sangchoolie, B., Adler, R., Hawkins, R., Schleiss, P., Arteconi, A., Mancini, A. (eds) Dependable Computing – EDCC 2024 Workshops. EDCC 2024. Communications in Computer and Information Science, vol 2078. Springer, Cham. https://doi.org/10.1007/978-3-031-56776-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56776-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56775-9

  • Online ISBN: 978-3-031-56776-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics