Skip to main content

IRBM: Incremental Restricted Boltzmann Machines for Concept Drift Detection and Adaption in Evolving Data Streams

  • Conference paper
  • First Online:
Advanced Computing (IACC 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2053))

Included in the following conference series:

  • 62 Accesses

Abstract

In today’s dynamically evolving data landscapes, detecting and adapting to concept drifts in streaming data is imperative. Concept drift occurs when there’s a shift in the statistical characteristics of input features, like their mean or variance, or when the relationship between these features and the target label changes over time. This drift can decrease a model’s accuracy because the model is trained on older data. As the data evolves, the model becomes outdated, which can lead to incorrect predictions and reduced performance. This paper introduces the Incremental Restricted Boltzmann Machine (IRBM), an approach designed to address these challenges. The IRBM adapts the traditional architecture and learning paradigms of Restricted Boltzmann Machines (RBMs) to incrementally process and learn from evolving data streams, ensuring model efficacy and accuracy over time. Through extensive experiments, we demonstrate the IRBM’s ability to swiftly detect concept drifts, adapt its internal representations, and maintain robust performance even when confronted with significant data evolutions. The proposed approach outperforms existing methods with an accuracy of 77.42%, 75.32%, 92.12% and 89.21% for electricity, phishing, weather, and rotating hyperplane respectively. Our findings suggest that the IRBM not only offers an effective approach to understanding and adapting to changing patterns in streaming data but also outperforms the other state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C.: Chapter 9 A survey of stream classification algorithms (2015)

    Google Scholar 

  2. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000)

    Google Scholar 

  3. Tsymbal, A.: The problem of concept drift: definitions and related work. Computer Science Department, Trinity College, Dublin, Ireland, Technical report, vol. 106 (2004)

    Google Scholar 

  4. Žliobaitė, I., Pechenizkiy, M., Gama, J.: An overview of concept drift applications. In: Japkowicz, N., Stefanowski, J. (eds.) Big Data Analysis: New Algorithms for a New Society. SBD, vol. 16, pp. 91–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26989-4_4

    Chapter  Google Scholar 

  5. Hesse, G., Lorenz, M.: Conceptual survey on data stream processing systems, pp. 798–803 (2015)

    Google Scholar 

  6. Mehta, S.: Concept drift in streaming data classification algorithms, platforms and issues. Procedia Comput. Sci. 122, 804–811 (2017)

    Article  Google Scholar 

  7. Ayad, O.: Learning under concept drift with support vector machines. In: Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg, S., Palm, G., Villa, A.E.P. (eds.) ICANN 2014. LNCS (LNAI and LNB), vol. 8681, pp. 587–594. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11179-7_74

    Chapter  Google Scholar 

  8. Gama, J., Žliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44 (2014)

    Article  Google Scholar 

  9. Cohen, L., Avrahami-Bakish, G., Last, M., Kandel, A., Kipersztok, O.: Real-time data mining of non-stationary data streams from sensor networks. Inform. Fusion 9(3), 344–353 (2008)

    Article  Google Scholar 

  10. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31, 2346–2363 (2018)

    Google Scholar 

  11. Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015). https://doi.org/10.1109/MCI.2015.2471196

    Article  Google Scholar 

  12. Fischer, A., Igel, C.: An introduction to restricted Boltzmann machines. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 14–36. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33275-3_2. ISBN 978-3-642-33274-6

  13. Jaworski, M., Duda, P., Rutkowski, L.: On applying the restricted Boltzmann machine to active concept drift detection (2017). https://doi.org/10.1109/SSCI.2017.8285409

  14. Korycki, Ł., Krawczyk, B.: Concept drift detection from multi-class imbalanced data streams. arXiv Learning (2021)

    Google Scholar 

  15. Jaworski, M., Duda, P., Rutkowska, D., Rutkowski, L.: On handling missing values in data stream mining algorithms based on the restricted Boltzmann machine. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. CCIS, vol. 1143, pp. 347–354. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36802-9_37

    Chapter  Google Scholar 

  16. Vu, H., Nguyen, T.D., Phung, D.: Detection of unknown anomalies in streaming videos with generative energy-based Boltzmann models. arXiv Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  17. Zhu, Q., Zhou, J., Wang, W.: Concept drift detection and update algorithm based on online restricted Boltzmann machine. In: Liang, Q., Wang, W., Mu, J., Liu, X., Na, Z. (eds.) AIC 2022. LNEE, vol. 871, pp. 305–311. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-1256-8_36

    Chapter  Google Scholar 

  18. Xu, S., Wang, J.: Dynamic extreme learning machine for data stream classification. Neurocomputing 238, 433–449 (2017)

    Article  Google Scholar 

  19. Xiulin, Z., Peipei, L., Xindong, W.: Data stream classification based on extreme learning machine: a review. Big Data Res. 30, 100356 (2022). https://doi.org/10.1016/j.bdr.2022.100356

    Article  Google Scholar 

  20. Neto, Á.C.L., Coelho, R.A., de Castro, C.L.: An incremental learning approach using long short-term memory neural networks. J. Control Autom. Electr. Syst. 33, 1457–1465 (2020)

    Article  Google Scholar 

  21. Oza, N.C., Russell, S.J.: Online bagging and boosting. In: Richardson, T.S., Jaakkola, T.S. (eds.) Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics, pp. 229–236. PMLR (2001). https://proceedings.mlr.press/r3/oza01a.html

  22. Dataset. Electricity dataset (2014). https://github.com/scikit-multiflow/streaming-datasets/blob/master/elec.csv. Accessed September 2023

  23. Dataset. Rotating hyperplane dataset (2014). https://github.com/scikit-multiflow/streaming-datasets/blob/master/hyperplane.csv. Accessed September 2023

  24. Dataset. Weather dataset (2014). https://github.com/scikit-multiflow/streaming-datasets/blob/master/weather.csv. Accessed September 2023

  25. Dataset. Phishing dataset (2014). https://github.com/ogozuacik/concept-drift-datasets-scikit-multiflow/tree/master/real-world/phishing.csv. Accessed September 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhangi Suryawanshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suryawanshi, S., Goswami, A., Patil, P. (2024). IRBM: Incremental Restricted Boltzmann Machines for Concept Drift Detection and Adaption in Evolving Data Streams. In: Garg, D., Rodrigues, J.J.P.C., Gupta, S.K., Cheng, X., Sarao, P., Patel, G.S. (eds) Advanced Computing. IACC 2023. Communications in Computer and Information Science, vol 2053. Springer, Cham. https://doi.org/10.1007/978-3-031-56700-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56700-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56699-8

  • Online ISBN: 978-3-031-56700-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics