Skip to main content

Characterization of Microalgae Biomass/PE Biocomposites Obtained by Compression and Rotational Molding

  • Conference paper
  • First Online:
Advances in Manufacturing IV (MANUFACTURING 2024)

Abstract

The non-degradable nature of synthetic plastic waste in the eco-system has led to an increase in the research on more eco-friendly materials. In this context, biocomposites have been developed and microalgae biomass has become an emerging potential source for their production. This study assesses the possibility of obtaining composites made of polyethylene and Tetraselmis biomass as a way to improve the environmental behavior of plastic parts, reducing the amount of virgin plastic used in the process, while providing at the same time interesting features, such as stabilization. Biocomposites were produced by compression and rotational molding, testing different biomass contents. Compression molding allowed to obtain pieces with up to a 20% of biomass load with practically the same thermal and mechanical properties that pure PE parts. In the case of rotomolding, although up to a 10% of biomass could be processed, a 5% of biomass seems to be the limit to get acceptable properties and a good visual appearance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Shanmugam, V., et al.: Circular economy in biocomposite development: state-of-the-art, challenges and emerging trends. Compos. Part C Open Access 5, 100138 (2021). https://doi.org/10.1016/j.jcomc.2021.100138

  2. Mukherjee, T., Kao, N.: PLA based biopolymer reinforced with natural fibre: a review. J. Polym. Environ. 19, 714–725 (2011). https://doi.org/10.1007/S10924-011-0320-6

    Article  Google Scholar 

  3. Suárez, L., Castellano, J., Díaz, S., Tcharkhtchi, A., Ortega, Z.: Are natural-based composites sustainable? Polymers (Basel). 13, 2326 (2021). https://doi.org/10.3390/POLYM13142326

    Article  Google Scholar 

  4. Mohan, A., Robert Antony, A., Greeshma, K., Yun, J.H., Ramanan, R., Kim, H.S.: Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy. Bioresour. Technol. 344, 126397 (2022). https://doi.org/10.1016/J.BIORTECH.2021.126397

  5. Chiellini, E., Cinelli, P., Ilieva, V.I., Martera, M.: Biodegradable thermoplastic composites based on polyvinyl alcohol and algae. Biomacromol. 9, 1007–1013 (2008). https://doi.org/10.1021/BM701041E

    Article  Google Scholar 

  6. Iannace, S., Nocilla, G., Nicolais, L.: Biocomposites based on sea algae fibers and biodegradable thermoplastic matrices. J. Appl. Polym. Sci. 73, 583–592 (1999)

    Article  Google Scholar 

  7. Lee, M.W., Han, S.O., Seo, Y.B.: Red algae fibre/poly(butylene succinate) biocomposites: the effect of fibre content on their mechanical and thermal properties. Compos. Sci. Technol. 68, 1266–1272 (2008). https://doi.org/10.1016/J.COMPSCITECH.2007.12.016

    Article  Google Scholar 

  8. Sim, K.J., Han, S.O., Seo, Y.B.: Dynamic mechanical and thermal properties of red algae fiber reinforced poly(lactic acid) biocomposites. Macromol. Res. 18, 489–495 (2010). https://doi.org/10.1007/S13233-010-0503-3/METRICS

    Article  Google Scholar 

  9. Hassan, M.M., Mueller, M., Tartakowska, D.J., Wagner, M.H.: Mechanical performance of hybrid rice straw/sea weed polypropylene composites. J. Appl. Polym. Sci. 120, 1843–1849 (2011). https://doi.org/10.1002/APP.33403

    Article  Google Scholar 

  10. Luan, L., Wu, W., Wagner, M.H., Mueller, M.: Seaweed as novel biofiller in polypropylene composites. J. Appl. Polym. Sci. 118, 997–1005 (2010). https://doi.org/10.1002/APP.32462

    Article  Google Scholar 

  11. Luan, L., Wu, W., Wagner, M.H.: Rheological behavior of lubricating systems in polypropylene/seaweed composites. J. Appl. Polym. Sci. 121, 2143–2148 (2011). https://doi.org/10.1002/APP.33940

    Article  Google Scholar 

  12. Albano, C., et al.: Thermal, mechanical, morphological, thermogravimetric, rheological and toxicological behavior of HDPE/seaweed residues composites. Compos. Struct. 71, 282–288 (2005). https://doi.org/10.1016/J.COMPSTRUCT.2005.09.036

    Article  Google Scholar 

  13. Cinar, S.O., Chong, Z.K., Kucuker, M.A., Wieczorek, N., Cengiz, U., Kuchta, K.: Bioplastic production from microalgae: a review. Int. J. Environ. Res. Public Health 17, 3842 (2020). https://doi.org/10.3390/IJERPH17113842

    Article  Google Scholar 

  14. Zeller, M.A., Hunt, R., Jones, A., Sharma, S.: Bioplastics and their thermoplastic blends from spirulina and chlorella microalgae. J. Appl. Polym. Sci. 130, 3263–3275 (2013). https://doi.org/10.1002/APP.39559

    Article  Google Scholar 

  15. Khalis, S.A.: The effect of compatibilizer addition on chlorella vulgaris microalgae utilization as a mixture for bioplastic. In: E3S Web Conference, vol. 67, p. 03047 (2018). https://doi.org/10.1051/e3sconf/20186703047

  16. Zhu, N., Ye, M., Shi, D., Chen, M.: Reactive compatibilization of biodegradable poly(butylene succinate)/spirulina microalgae composites. Macromol. Res. 25, 165–171 (2017). https://doi.org/10.1007/S13233-017-5025-9/METRICS

    Article  Google Scholar 

  17. Khoobkar, Z., Delavari Amrei, H., Heydarinasab, A., Mirzaie, M.A.M.: Biofixation of CO2 and biomass production from model natural gas using microalgae: an attractive concept for natural gas sweetening. J. CO2 Util. 64, 102153 (2022). https://doi.org/10.1016/J.JCOU.2022.102153

  18. Dianursanti, Gozan, M., Noviasari, C.: The effect of glycerol addition as plasticizer in spirulina platensis based bioplastic. In: E3S Web Conference, vol. 67, p. 03048 (2018). https://doi.org/10.1051/E3SCONF/20186703048

  19. Sabathini, H.A., Windiani, L., Dianursanti, Gozan, M.: Mechanical physical properties of chlorella-PVA based bioplastic with ultrasonic homogenizer. In: E3S Web Conference, vol. 67, p. 03046 (2018). https://doi.org/10.1051/E3SCONF/20186703046

  20. Shi, B., Wideman, G., Wang, J.H.: A new approach of BioCO 2 fixation by thermoplastic processing of microalgae. J. Polym. Environ. 20, 124–131 (2012). https://doi.org/10.1007/S10924-011-0329-X

    Article  Google Scholar 

  21. Torres, S., Navia, R., Campbell Murdy, R., Cooke, P., Misra, M., Mohanty, A.K.: Green composites from residual microalgae biomass and poly(butylene adipate-co-terephthalate): processing and plasticization. ACS Sustain. Chem. Eng. 3, 614–624 (2015). https://doi.org/10.1021/SC500753H/ASSET/IMAGES/LARGE/SC-2014-00753H_0004.JPEG

    Article  Google Scholar 

  22. Ciapponi, R., Turri, S., Levi, M.: Mechanical reinforcement by microalgal biofiller in novel thermoplastic biocompounds from plasticized gluten. Materials (Basel) 12 (2019). https://doi.org/10.3390/MA12091476

  23. Bhattacharya, M., Goswami, S.: Microalgae – a green multi-product biorefinery for future industrial prospects. Biocatal. Agric. Biotechnol. 25, 101580 (2020). https://doi.org/10.1016/J.BCAB.2020.101580

    Article  Google Scholar 

  24. Eagan, J.M., et al.: Combining polyethylene and polypropylene: enhanced performance with PE/ i PP multiblock polymers. Science 355, 814–816 (2017). https://doi.org/10.1126/SCIENCE.AAH5744

    Article  Google Scholar 

  25. Toro, C., Reddy, M.M., Navia, R., Rivas, M., Misra, M., Mohanty, A.K.: Characterization and application in biocomposites of residual microalgal biomass generated in third generation biodiesel. J. Polym. Environ. 21, 944–951 (2013). https://doi.org/10.1007/S10924-013-0609-8/METRICS

    Article  Google Scholar 

  26. Ortega, Z., Romero, F., Paz, R., Suárez, L., Benítez, A.N., Marrero, M.D.: Valorization of invasive plants from Macaronesia as filler materials in the production of natural fiber composites by rotational molding. Polymers (Basel) 13, 2220 (2021). https://doi.org/10.3390/POLYM13132220/S1

    Article  Google Scholar 

  27. Kim, G.M., Chang, W.S., Kim, Y.K.: Biocomposites using whole or valuable component-extracted microalgae blended with polymers: a review. Catalysts 12, 25 (2021). https://doi.org/10.3390/CATAL12010025

    Article  Google Scholar 

  28. Oliveira, C.Y.B., et al.: A multidisciplinary review of tetradesmus obliquus: a microalga suitable for large-scale biomass production and emerging environmental applications. Rev. Aquac. 13, 1594–1618 (2021). https://doi.org/10.1111/raq.12536

    Article  Google Scholar 

  29. González-Balderas, R.M., Felix, M., Bengoechea, C., Orta Ledesma, M.T., Guerrero, A., Velasquez-Orta, S.B.: Development of composites based on residual microalgae biomass cultivated in wastewater. Eur. Polym. J. 160, 110766 (2021). https://doi.org/10.1016/J.EURPOLYMJ.2021.110766

  30. Jamilatun, S., Budhijanto, R., Budiman, A.: Thermal decomposition and kinetic studies of pyrolysis of spirulina platensis residue. Int. J. Renew. Energy Dev. 6, 193–201 (2017). https://doi.org/10.14710/ijred.6.3.193-201

  31. Nassar, M.M.A., Sider, I.: Evaluation of novel compatibility strategies for improving the performance of recycled low-density polyethylene based biocomposites. Polymers (Basel) 13 (2021). https://doi.org/10.3390/polym13203486

  32. Suárez, L., Castellano, J., Romero, F., Marrero, M.D., Benítez, A.N., Ortega, Z.: Environmental hazards of giant reed (Arundo Donax l.) in the Macaronesia region and its characterisation as a potential source for the production of natural fibre composites. Polymers (Basel) 13 (2021). https://doi.org/10.3390/polym13132101

  33. Grewell, D., Schrader, J., Srinivasan, G.: Developing protein-based plastics. In: Proceedings of the ACS Symposium Series, vol. 1178, pp. 357–370. American Chemical Society (2014)

    Google Scholar 

  34. Cisneros-López, E.O., et al.: Polylactic acid-agave fiber biocomposites produced by rotational molding: a comparative study with compression molding. Adv. Polym. Technol. 37, 2528–2540 (2018). https://doi.org/10.1002/ADV.21928

    Article  Google Scholar 

  35. Ortega, Z., McCourt, M., Romero, F., Suárez, L., Cunningham, E.: Recent developments in inorganic composites in rotational molding. Polym. 14, 5260 (2022). https://doi.org/10.3390/POLYM14235260

  36. Aniśko, J., Barczewski, M.: Uniaxial rotational molding of bio-based low-density polyethylene filled with black tea waste. Mater. 16, 3641 (2023). https://doi.org/10.3390/MA16103641

  37. Otsuki, J., Zhang, F., Kabeya, H., Hirotsu, T.: Synthesis and tensile properties of a novel composite of chlorella and polyethylene. J. Appl. Polym. Sci. 92, 812–816 (2004). https://doi.org/10.1002/APP.13650

    Article  Google Scholar 

  38. Zhang, F., Kabeya, H., Kitagawa, R., Hirotsu, T., Yamashita, M., Otsuki, T.: Exploratory research of PVC-chlorella composite material (PCCM) as effective utilization of chlorella biologically fixing CO2. J. Mater. Sci. 35, 2603–2609 (2000). https://doi.org/10.1023/A:1004779415778/METRICS

    Article  Google Scholar 

Download references

Acknowledgements

The financial support for developing this research work was received from “Convocatoria complementaria de ayudas para la recualificación del sistema universitario español para 2021–2023 (Modalidad Margarita Salas) of The Ministry of Universities of Spain and The European Union (NexGeneationEU"/PRTR) en consonancia con la Disposición adicional décima de la Ley 17/2022, de 5 de septiembre. Proyecto LICEM (EIS 2021 33), financiado por la Consejería de Economía, Conocimiento y Empleo del Gobierno de Canarias a través de Fondo Europeo de Desarrollo Regional. Canarias Avanza con Europa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Díaz, S., Ortega, Z., Ríos, R. (2024). Characterization of Microalgae Biomass/PE Biocomposites Obtained by Compression and Rotational Molding. In: Gapiński, B., Ciszak, O., Ivanov, V., Machado, J.M. (eds) Advances in Manufacturing IV. MANUFACTURING 2024. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-56463-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56463-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56465-9

  • Online ISBN: 978-3-031-56463-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics