Skip to main content

Fairness Through Domain Awareness: Mitigating Popularity Bias for Music Discovery

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2024)

Abstract

As online music platforms continue to grow, music recommender systems play a vital role in helping users navigate and discover content within their vast musical databases. At odds with this larger goal, is the presence of popularity bias, which causes algorithmic systems to favor mainstream content over, potentially more relevant, but niche items. In this work we explore the intrinsic relationship between music discovery and popularity bias through the lens of individual fairness. We propose a domain-aware, individual fairness-based approach which addresses popularity bias in graph neural network based recommender systems. Our approach uses individual fairness to reflect a ground truth listening experience, i.e., if two songs sound similar, this similarity should be reflected in their representations. In doing so, we facilitate meaningful music discovery that is resistant to popularity bias and grounded in the music domain. We apply our BOOST methodology to two discovery based tasks, performing recommendations at both the playlist level and user level. Then, we ground our evaluation in the cold start setting, showing that our approach outperforms existing fairness benchmarks in both performance and recommendation of lesser-known content. Finally, our analysis makes the case for the importance of domain-awareness when mitigating popularity bias in music recommendation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Github repository https://github.com/Rsalganik1123/Domain_Aware_ECIR2024.

References

  1. Spotipy: Spotify API in Python (2014). https://spotipy.readthedocs.io/en/2.19.0/

  2. Abdollahpouri, H., Burke, R., Mobasher, B.: Managing popularity bias in recommender systems with personalized re-ranking (2019)

    Google Scholar 

  3. Abdollahpouri, H., Mansoury, M., Burke, R., Mobasher, B.: The connection between popularity bias, calibration, and fairness in recommendation. In: Proceedings of the 14th ACM Conference on Recommender Systems, p. 726–731. RecSys 2020, Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3383313.3418487

  4. Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using ranking-based techniques. IEEE Trans. Knowl. Data Eng. 24(5), 896–911 (2012). https://doi.org/10.1109/TKDE.2011.15

    Article  Google Scholar 

  5. Bauer, C., Kholodylo, M., Strauss, C.: Music recommender systems challenges and opportunities for non-superstar artists. In: Bled eConference (2017)

    Google Scholar 

  6. Bontempelli, T., Chapus, B., Rigaud, F., Morlon, M., Lorant, M., Salha-Galvan, G.: Flow moods: recommending music by moods on deezer. In: RecSys 2022 (2022)

    Google Scholar 

  7. Boratto, L., Fenu, G., Marras, M.: Interplay between upsampling and regularization for provider fairness in recommender systems. User Model. User-Adap. Inter. 31(3), 421–455 (2021). https://doi.org/10.1007/s11257-021-09294-8

    Article  Google Scholar 

  8. Burges, C.: From ranknet to lambdarank to lambdamart: an overview. Learning 11, 23–581 (2010)

    Google Scholar 

  9. Burke, R., Ramezani, M.: Matching recommendation technologies and domains (2011). https://doi.org/10.1007/978-0-387-85820-311

  10. Cañamares, R., Castells, P.: Should i follow the crowd? a probabilistic analysis of the effectiveness of popularity in recommender systems. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, p. 415–424. SIGIR 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3209978.3210014

  11. Castells, P., Moffat, A.: Offline recommender system evaluation: challenges and new directions. AI Magazine 43(2), 225–238 (2022). https://doi.org/10.1002/aaai.12051, https://onlinelibrary.wiley.com/doi/abs/10.1002/aaai.12051

  12. Celma, O., Cano, P.: From hits to niches? or how popular artists can bias music recommendation and discovery. In: Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition. NETFLIX 2008, Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1722149.1722154

  13. Celma, Ò., Herrera, P.: A new approach to evaluating novel recommendations. In: Proceedings of the ACM Conference on Recommender Systems, RecSys 2008 (2008). https://api.semanticscholar.org/CorpusID:7572506

  14. Chakraborty, A., Hannák, A., Biega, A.J., Gummadi, K.P.: Fair sharing for sharing economy platforms (2017)

    Google Scholar 

  15. Chen, C.W., Lamere, P., Schedl, M., Zamani, H.: RecSys challenge 2018: automatic music playlist continuation. In: RecSys 2018 (2018)

    Google Scholar 

  16. Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He, X.: Bias and debias in recommender system: a survey and future directions (2020). https://doi.org/10.48550/ARXIV.2010.03240

  17. Cunningham, S.J., Bainbridge, D., Mckay, D.: Finding new music: a diary study of everyday encounters with novel songs. In: International Society for Music Information Retrieval Conference (2007)

    Google Scholar 

  18. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2019)

    Google Scholar 

  19. Diaz, F., Mitra, B., Ekstrand, M.D., Biega, A.J., Carterette, B.: Evaluating stochastic rankings with expected exposure. In: CIKM 2020 (2020)

    Google Scholar 

  20. Ding, Y., Mok, P., Ma, Y., Bin, Y.: Personalized fashion outfit generation with user coordination preference learning. Inform. Process. Manag. 60(5), 103434 (2023). https://doi.org/10.1016/j.ipm.2023.103434, https://www.sciencedirect.com/science/article/pii/S0306457323001711

  21. Dong, Y., Kang, J., Tong, H., Li, J.: Individual fairness for graph neural networks: a ranking based approach. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 300–310. KDD 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3447548.3467266 event-place: Virtual Event, Singapore

  22. Downey, A.B.: Evidence for long-tailed distributions in the internet. In: Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement, p. 229–241. IMW 2001, Association for Computing Machinery, New York, NY, USA (2001). https://doi.org/10.1145/505202.505230

  23. Drott, E.: Why the next song matters: streaming, recommendation, scarcity. Twentieth-Century Music 15, 325–357 (2018). https://doi.org/10.1017/S1478572218000245

  24. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness (2011)

    Google Scholar 

  25. Ekstrand, M.D., Harper, F.M., Willemsen, M.C., Konstan, J.A.: User perception of differences in recommender algorithms. In: Proceedings of the 8th ACM Conference on Recommender Systems, p. 161–168. RecSys 2014, Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2645710.2645737

  26. Gao, C., et al.: A survey of graph neural networks for recommender systems: challenges, methods, and directions. ACM Trans. Recomm. Syst. 1(1), 1–51 (2023). https://doi.org/10.1145/3568022

  27. Garcia-Gathright, J., St. Thomas, B., Hosey, C., Nazari, Z., Diaz, F.: Understanding and evaluating user satisfaction with music discovery. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, p. 55–64. SIGIR 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3209978.3210049

  28. Goel, S., Broder, A., Gabrilovich, E., Pang, B.: Anatomy of the long tail: ordinary people with extraordinary tastes. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, p. 201–210. WSDM 2010, Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1718487.1718513

  29. Harper, F.M., Konstan, J.A.: The MovieLens datasets: History and context. ACM Trans. Interact. Intell. Syst. 5(4), 1–19 (2015). https://doi.org/10.1145/2827872

  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR 2016 (2016)

    Google Scholar 

  31. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: SIGIR 2020 (2020)

    Google Scholar 

  32. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). https://doi.org/10.1145/963770.963772

  33. Hossain, I., et al.: A survey of recommender system techniques and the ecommerce domain (2023)

    Google Scholar 

  34. Jadidinejad, A.H., Macdonald, C., Ounis, I.: How sensitive is recommendation systems’ offline evaluation to popularity? (2019)

    Google Scholar 

  35. Jannach, D., Lerche, L., Kamehkhosh, I., Jugovac, M.: What recommenders recommend: an analysis of recommendation biases and possible countermeasures. User Model. User-Adap. Inter. 25(5), 427–491 (2015). https://doi.org/10.1007/s11257-015-9165-3

    Article  Google Scholar 

  36. Kamehkhosh, I., Jannach, D.: User perception of next-track music recommendations. In: Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, p. 113–121. UMAP 2017, Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3079628.3079668

  37. Kang, J., Zhu, Y., Xia, Y., Luo, J., Tong, H.: RawlsGCN: towards Rawlsian difference principle on graph convolutional network. In: WWW 2022 (2022)

    Google Scholar 

  38. Korzeniowsky, F., Oramas, S., Gouyon, F.: Artist similarity with graph neural networks. In: Proceedings of the 18th International Society for Music Information Retrieval Conference. ISMIR (2021)

    Google Scholar 

  39. Lavranos, C., Kostagiolas, P., Martzoukou, K.: Theoretical and applied issues on the impact of information on musical creativity: an information seeking behavior perspective, pp. 1–16 (2016). https://doi.org/10.4018/978-1-5225-0270-8.ch001

  40. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  41. Lo, K., Ishigaki, T.: Matching novelty while training: Novel recommendation based on personalized pairwise loss weighting. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 468–477 (2019)

    Google Scholar 

  42. Mansoury, M., Abdollahpouri, H., Pechenizkiy, M., Mobasher, B., Burke, R.: A graph-based approach for mitigating multi-sided exposure bias in recommender systems. ACM Trans. Inform. Syst. 40(2), 1–31 (2021). https://doi.org/10.1145/3470948

  43. Melchiorre, A., Rekabsaz, N., Parada-Cabaleiro, E., Brandl, S., Lesota, O., Schedl, M.: Investigating gender fairness of recommendation algorithms in the music domain. Inform. Process. Manag. 58, 102666 (2021)

    Article  Google Scholar 

  44. Mäntymäki, M., Islam, N.: Gratifications from using freemium music streaming services: differences between basic and premium users. In: International Confererence on Information Systems (2015)

    Google Scholar 

  45. Möller, J., Trilling, D., Helberger, N., van Es, B.: Do not blame it on the algorithm: an empirical assessment of multiple recommender systems and their impact on content diversity. Information, Communication & Society (2018)

    Google Scholar 

  46. Noh, T., Yeo, H., Kim, M., Han, K.: A study on user perception and experience differences in recommendation results by domain expertise: the case of fashion domains. In: Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems. CHI EA 2023, Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3544549.3585641

  47. Park, Y.J., Tuzhilin, A.: The long tail of recommender systems and how to leverage it. In: Proceedings of the 2008 ACM Conference on Recommender Systems, p. 11–18. RecSys 2008, Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1454008.1454012

  48. Patro, G.K., Biswas, A., Ganguly, N., Gummadi, K.P., Chakraborty, A.: FairRec: two-sided fairness for personalized recommendations in two-sided platforms. In: Proceedings of The Web Conference 2020. ACM (2020). https://doi.org/10.1145/3366423.3380196

  49. Raff, A., Mladenow, A., Strauss, C.: Music discovery as differentiation strategy for streaming providers. In: Proceedings of the 22nd International Conference on Information Integration and Web-Based Applications & Services, p. 476–480. iiWAS 2020, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3428757.3429151

  50. Rey, D., Neuhäuser, M.: Wilcoxon-signed-rank test (2011)

    Google Scholar 

  51. Rhee, W., Cho, S.M., Suh, B.: Countering popularity bias by regularizing score differences. In: Proceedings of the 16th ACM Conference on Recommender Systems, p. 145–155. RecSys 2022, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3523227.3546757

  52. Salha-Galvan, G., Hennequin, R., Chapus, B., Tran, V.A., Vazirgiannis, M.: Cold start similar artists ranking with gravity-inspired graph autoencoders (2021). https://doi.org/10.48550/ARXIV.2108.01053

  53. Saravanou, A., Tomasi, F., Mehrotra, R., Lalmas, M.: Multi-task learning of graph-based inductive representations of music content. In: Proceedings of the 22nd International Society for Music Information Retrieval Conference, pp. 602–609. ISMIR, Online (2021). https://doi.org/10.5281/zenodo.5624379

  54. Schedl, M., Zamani, H., Chen, C.W., Deldjoo, Y., Elahi, M.: Current challenges and visions in music recommender systems research. Int. J. Multimedia Inform. Retrieval 7(2), 95–116 (2018). https://doi.org/10.1007/s13735-018-0154-2

  55. Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., Joachims, T.: Recommendations as treatments: debiasing learning and evaluation (2016)

    Google Scholar 

  56. Stanisljevic, D.: The impact of Spotify features on music discovery in the streaming platform age. Master’s thesis (2020). http://hdl.handle.net/2105/55511

  57. Steck, H.: Item popularity and recommendation accuracy. In: RecSys 2011. ACM (2011)

    Google Scholar 

  58. Wang, X., Wang, W.H.: Providing item-side individual fairness for deep recommender systems. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, p. 117–127. FAccT 2022, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3531146.3533079

  59. Wei, T., Feng, F., Chen, J., Wu, Z., Yi, J., He, X.: Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender system. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, p. 1791–1800. KDD 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3447548.3467289

  60. Wu, C., Wu, F., Huang, Y., Xie, X.: Personalized news recommendation: methods and challenges (2022)

    Google Scholar 

  61. Wu, S., Sun, F., Zhang, W., Xie, X., Cui, B.: Graph neural networks in recommender systems: a survey (2020)

    Google Scholar 

  62. Yang, C.C., Chen, H., Hong, K.: Visualization of large category map for internet browsing. Decis. Support Syst. 35(1), 89–102 (2003). https://doi.org/10.1016/S0167-9236(02)00101-X

  63. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM (2018). https://doi.org/10.1145/3219819.3219890

  64. Zhang, A., Ma, W., Wang, X., Chua, T.S.: Incorporating bias-aware margins into contrastive loss for collaborative filtering. In: Advances in Neural Information Processing Systems, vol. 35: Annual Conference on Neural Information Processing Systems, NeurIPS (2022)

    Google Scholar 

  65. Zhang, Y., et al.: Causal intervention for leveraging popularity bias in recommendation. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, p. 11–20. SIGIR 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3404835.3462875

  66. Zhao, M., et al.: Investigating accuracy-novelty performance for graph-based collaborative filtering. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM (2022). https://doi.org/10.1145/3477495.3532005

  67. Zheng, Y., Gao, C., Li, X., He, X., Li, Y., Jin, D.: Disentangling user interest and conformity for recommendation with causal embedding. In: Proceedings of the Web Conference 2021, p. 2980–2991. WWW 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3442381.3449788

  68. Zhu, Z., He, Y., Zhao, X., Zhang, Y., Wang, J., Caverlee, J.: Popularity-opportunity bias in collaborative filtering. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, p. 85–93. WSDM 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3437963.3441820

Download references

Acknowledgements

Funding support for project activities has been partially provided by Canada CIFAR AI Chair, Facebook award, IVADO scholarship, and NSERC Discovery Grants program. We also express our gratitude to Compute Canada for their support in providing facilities for our evaluations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Salganik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salganik, R., Diaz, F., Farnadi, G. (2024). Fairness Through Domain Awareness: Mitigating Popularity Bias for Music Discovery. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14611. Springer, Cham. https://doi.org/10.1007/978-3-031-56066-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56066-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56065-1

  • Online ISBN: 978-3-031-56066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics