Skip to main content

A Deep Learning Approach for Selective Relevance Feedback

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2024)

Abstract

Pseudo-relevance feedback (PRF) can enhance average retrieval effectiveness over a sufficiently large number of queries. However, PRF often introduces a drift into the original information need, thus hurting the retrieval effectiveness of several queries. While a selective application of PRF can potentially alleviate this issue, previous approaches have largely relied on unsupervised or feature-based learning to determine whether a query should be expanded. In contrast, we revisit the problem of selective PRF from a deep learning perspective, presenting a model that is entirely data-driven and trained in an end-to-end manner. The proposed model leverages a transformer-based bi-encoder architecture. Additionally, to further improve retrieval effectiveness with this selective PRF approach, we make use of the model’s confidence estimates to combine the information from the original and expanded queries. In our experiments, we apply this selective feedback on a number of different combinations of ranking and feedback models, and show that our proposed approach consistently improves retrieval effectiveness for both sparse and dense ranking models, with the feedback models being either sparse, dense or generative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Implementation available at: https://github.com/suchanadatta/AdaptiveRLM.git.

References

  1. Bashir, S., Rauber, A.: Improving retrievability of patents with cluster-based pseudo-relevance feedback documents selection. In: Proceedings of CIKM 2009, pp. 1863–1866. ACM, New York (2009)

    Google Scholar 

  2. Belkin, N.J., Oddy, R.N., Brooks, H.M.: Ask for information retrieval: Part I. Background and theory. J. Doc. 38(2), 61–71 (1982)

    Article  Google Scholar 

  3. Billerbeck, B., Zobel, J.: Questioning query expansion: an examination of behaviour and parameters. In: Proceedings of 15th Australasian Database Conference - Volume 27, ADC 2004, pp. 69–76. Australian Computer Society Inc, AUS (2004)

    Google Scholar 

  4. Cao, G., Nie, J.Y., Gao, J., Robertson, S.: Selecting good expansion terms for pseudo-relevance feedback. In: Proceedings of SIGIR 2008, pp. 243–250. ACM, New York (2008)

    Google Scholar 

  5. Cohen, D., Mitra, B., Lesota, O., Rekabsaz, N., Eickhoff, C.: Not all relevance scores are equal: efficient uncertainty and calibration modeling for deep retrieval models. In: Proceedings of SIGIR 2021, pp. 654–664. ACM, New York (2021)

    Google Scholar 

  6. Cormack, G.V., Clarke, C.L.A., Buettcher, S.: Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In: Proceedings of SIGIR 2009, pp. 758–759. ACM, New York (2009)

    Google Scholar 

  7. Craswell, N., Mitra, B., Yilmaz, E., Campos, D.: Overview of the TREC 2020 deep learning track. In: Proceedings of TREC 2020, vol. 1266. NIST Special Publication (2020)

    Google Scholar 

  8. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Voorhees, E.M.: Overview of the TREC 2019 deep learning track (2019)

    Google Scholar 

  9. Cronen-Townsend, S., Zhou, Y., Croft, W.B.: A framework for selective query expansion. In: Proceedings of CIKM 2004, pp. 236–237. ACM, New York (2004)

    Google Scholar 

  10. Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting query performance. In: Proceedings of SIGIR 2002, pp. 299–306. ACM, New York (2002)

    Google Scholar 

  11. Datta, S., Ganguly, D., Greene, D., Mitra, M.: Deep-QPP: a pairwise interaction-based deep learning model for supervised query performance prediction. In: Proceedings of WSDM 2022, pp. 201–209. ACM, New York (2022)

    Google Scholar 

  12. Datta, S., MacAvaney, S., Ganguly, D., Greene, D.: A ‘pointwise-query, listwise-document’ based query performance prediction approach. In: Proceedings of SIGIR 2022, pp. 2148–2153. ACM, New York (2022)

    Google Scholar 

  13. Deveaud, R., Mothe, J., Ullah, M.Z., Nie, J.Y.: Learning to adaptively rank document retrieval system configurations. ACM Trans. Inf. Syst. 37(1), 1–41 (2018)

    Article  Google Scholar 

  14. Ganguly, D., Leveling, J., Jones, G.J.F.: Cross-lingual topical relevance models. In: COLING, pp. 927–942. Indian Institute of Technology Bombay, India (2012)

    Google Scholar 

  15. He, B., Ounis, I.: Combining fields for query expansion and adaptive query expansion. Inf. Process. Manage. 43(5), 1294–1307 (2007)

    Article  Google Scholar 

  16. He, B., Ounis, I.: Finding good feedback documents. In: Proceedings of CIKM 2009, pp. 2011–2014. ACM, New York (2009)

    Google Scholar 

  17. Jaleel, N.A., et al.: UMass at TREC 2004: novelty and HARD. In: TREC 2004 (2004)

    Google Scholar 

  18. Khattab, O., Zaharia, M.: ColBERT: efficient and effective passage search via contextualized late interaction over BERT, pp. 39–48. ACM, New York (2020)

    Google Scholar 

  19. Lavrenko, V., Croft, W.B.: Relevance based language models. In: Proceedings of SIGIR 2001, pp. 120–127. ACM, New York (2001)

    Google Scholar 

  20. Lee, K.S., Croft, W.B., Allan, J.: A cluster-based resampling method for pseudo-relevance feedback. In: Proceedings of SIGIR 2008, pp. 235–242. ACM, New York (2008)

    Google Scholar 

  21. Li, C., et al.: NPRF: a neural pseudo relevance feedback framework for ad-hoc information retrieval. In: Proceedings of EMNLP 2018, Brussels, Belgium, pp. 4482–4491. ACL (2018)

    Google Scholar 

  22. Li, H., Mourad, A., Koopman, B., Zuccon, G.: How does feedback signal quality impact effectiveness of pseudo relevance feedback for passage retrieval. In: Proceedings of SIGIR 2022, pp. 2154–2158. ACM, New York (2022)

    Google Scholar 

  23. Li, H., et al.: To interpolate or not to interpolate: PRF, dense and sparse retrievers. In: Proceedings of SIGIR 2022, pp. 2495–2500. ACM, New York (2022)

    Google Scholar 

  24. Lin, J.: Divergence measures based on the shannon entropy. IEEE Trans. Inf. Theor. 37(1), 145–151 (2006)

    Article  MathSciNet  Google Scholar 

  25. Lv, Y., Zhai, C.: Adaptive relevance feedback in information retrieval. In: Proceedings of CIKM 2009, pp. 255–264. ACM, New York (2009)

    Google Scholar 

  26. Mackie, I., Chatterjee, S., Dalton, J.: Generative relevance feedback with large language models. In: Proceedings of SIGIR 2023, pp. 2026–2031. ACM, New York (2023)

    Google Scholar 

  27. Mitra, M., Singhal, A., Buckley, C.: Improving automatic query expansion. In: Proceedings of SIGIR 1998, pp. 206–214. ACM, New York (1998)

    Google Scholar 

  28. Montazeralghaem, A., Zamani, H., Allan, J.: A reinforcement learning framework for relevance feedback. In: Proceedings of SIGIR 2020, pp. 59–68. ACM, New York (2020)

    Google Scholar 

  29. Naseri, S., Dalton, J., Yates, A., Allan, J.: CEQE: contextualized embeddings for query expansion. In: Hiemstra, D., Moens, M.F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12656, pp. 467–482. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72113-8_31

    Chapter  Google Scholar 

  30. Nguyen, T., et al.: MS MARCO: a human generated machine reading comprehension dataset. In: CoCo@NIPS. CEUR Workshop Proceedings, vol. 1773 (2016)

    Google Scholar 

  31. Nogueira, R.F., Yang, W., Cho, K., Lin, J.: Multi-stage document ranking with BERT. CoRR abs/1910.14424 (2019)

    Google Scholar 

  32. Ogilvie, P., Voorhees, E., Callan, J.: On the number of terms used in automatic query expansion. Inf. Retrieval 12(6), 666–679 (2009)

    Article  Google Scholar 

  33. Robertson, S., Walker, S., Beaulieu, M., Gatford, M., Payne, A.: Okapi at TREC-4 (1996)

    Google Scholar 

  34. Rocchio, J.J.: Relevance Feedback in Information Retrieval. Prentice Hall, Englewood Cliffs (1971)

    Google Scholar 

  35. Roy, D., Ganguly, D., Mitra, M., Jones, G.J.: Word vector compositionality based relevance feedback using kernel density estimation. In: Proceedings of CIKM 2016, pp. 1281–1290. ACM, New York (2016)

    Google Scholar 

  36. Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In: Proceedings of ICML 2008, pp. 880–887. ACM, New York (2008)

    Google Scholar 

  37. Shtok, A., Kurland, O., Carmel, D.: Using statistical decision theory and relevance models for query-performance prediction. In: Proceedings of SIGIR 2010, pp. 259–266. ACM, New York (2010)

    Google Scholar 

  38. Shtok, A., Kurland, O., Carmel, D., Raiber, F., Markovits, G.: Predicting query performance by query-drift estimation. ACM Trans. Inf. Syst. 30(2), 1–35 (2012)

    Article  Google Scholar 

  39. Terra, E., Warren, R.: Poison pills: harmful relevant documents in feedback. In: Proceedings of CIKM 2005, pp. 319–320. ACM, New York (2005)

    Google Scholar 

  40. Wang, X., Macdonald, C., Tonellotto, N., Ounis, I.: Pseudo-relevance feedback for multiple representation dense retrieval. In: ICTIR, pp. 297–306. ACM, New York (2021)

    Google Scholar 

  41. Wang, X., MacDonald, C., Tonellotto, N., Ounis, I.: ColBERT-PRF: semantic pseudo-relevance feedback for dense passage and document retrieval. ACM Trans. Web 17(1), 1–39 (2023)

    Google Scholar 

  42. Xiong, L., et al.: Approximate nearest neighbor negative contrastive learning for dense text retrieval. In: ICLR (2021)

    Google Scholar 

  43. Xu, J., Croft, W.B.: Improving the effectiveness of information retrieval with local context analysis. ACM Trans. Inf. Syst. 18(1), 79–112 (2000)

    Article  Google Scholar 

  44. Yu, H., Xiong, C., Callan, J.: Improving query representations for dense retrieval with pseudo relevance feedback, pp. 3592–3596. ACM, New York (2021)

    Google Scholar 

  45. Zamani, H., Dadashkarimi, J., Shakery, A., Croft, W.B.: Pseudo-relevance feedback based on matrix factorization. In: Proceedings CIKM 2016, pp. 1483–1492. ACM, New York (2016)

    Google Scholar 

  46. Zheng, Z., Hui, K., He, B., Han, X., Sun, L., Yates, A.: BERT-QE: contextualized query expansion for document re-ranking. In: Findings of the ACL: EMNLP 2020, pp. 4718–4728. ACL (2020)

    Google Scholar 

  47. Zhou, Y., Croft, W.B.: Query performance prediction in web search environments. In: Proceedings of SIGIR 2007, pp. 543–550. ACM, New York (2007)

    Google Scholar 

  48. Zhuang, S., Li, H., Zuccon, G.: Implicit feedback for dense passage retrieval: a counterfactual approach. In: Proceedings of SIGIR 2022, pp. 18–28. ACM, New York (2022)

    Google Scholar 

Download references

Acknowledgement

The first and the fourth authors were partially supported by Science Foundation Ireland (SFI) grant number SFI/12/RC/2289_P2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchana Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Datta, S., Ganguly, D., MacAvaney, S., Greene, D. (2024). A Deep Learning Approach for Selective Relevance Feedback. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14609. Springer, Cham. https://doi.org/10.1007/978-3-031-56060-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56060-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56059-0

  • Online ISBN: 978-3-031-56060-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics