Skip to main content

Geometric Thickness of Multigraphs is \(\exists \mathbb {R}\)-Complete

  • Conference paper
  • First Online:
LATIN 2024: Theoretical Informatics (LATIN 2024)

Abstract

We say that a (multi)graph \(G = (V,E)\) has geometric thickness t if there exists a straight-line drawing \(\varphi : V \rightarrow \mathbb {R}^2\) and a t-coloring of its edges where no two edges sharing a point in their relative interior have the same color. The Geometric Thickness problem asks whether a given multigraph has geometric thickness at most t. In this paper, we settle the computational complexity of Geometric Thickness by showing that it is \(\exists \mathbb {R}\)-complete already for thickness \(57\). Moreover, our reduction shows that the problem is \(\exists \mathbb {R}\)-complete for \(8280 \)-planar graphs, where a graph is k-planar if it admits a topological drawing with at most k crossings per edge. In this paper we answer previous questions on geometric thickness and on other related problems, in particular that simultaneous graph embeddings of \(58\) edge-disjoint graphs and pseudo-segment stretchability with chromatic number \(57\) are \(\exists \mathbb {R}\)-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alekseev, V.B., Gončakov, V.S.: The thickness of an arbitrary complete graph. Math. USSR-Sbornik 30(2), 187 (1976)

    Article  MathSciNet  Google Scholar 

  2. Beineke, L.W., Harary, F.: The thickness of the complete graph. Canadian J. Math. 17, 850–859 (1965)

    Article  MathSciNet  Google Scholar 

  3. Brandenburg, F.J.: Straight-line drawings of 1-planar graphs. arXiv preprint arXiv:2109.01692 (2021)

  4. Cardinal, J., Kusters, V.: The complexity of simultaneous geometric graph embedding. J. Graph Algor. Appl. 19(1), 259–272 (2015)

    Article  MathSciNet  Google Scholar 

  5. Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete graphs. J. Graph Algor. Appl. 4(3), 5–17 (2000)

    Article  MathSciNet  Google Scholar 

  6. Dujmovic, V., Joret, G., Micek, P., Morin, P., Ueckerdt, T., Wood, D.R.: Planar graphs have bounded queue-number. J. ACM 67(4), 22:1–22:38 (2020)

    Google Scholar 

  7. Dujmovic, V., Morin, P.: Personal communication (2022)

    Google Scholar 

  8. Dujmovic, V., Morin, P., Wood, D.R.: Graph product structure for non-minor-closed classes. J. Comb. Theory, Ser. B 162, 34–67 (2023)

    Google Scholar 

  9. Dujmovic, V., Pór, A., Wood, D.R.: Track layouts of graphs. Discret. Math. Theor. Comput. Sci. 6(2), 497–522 (2004)

    MathSciNet  Google Scholar 

  10. Durocher, S., Gethner, E., Mondal, D.: Thickness and colorability of geometric graphs. Comput. Geom. 56, 1–18 (2016)

    Article  MathSciNet  Google Scholar 

  11. Eppstein, D.: Separating thickness from geometric thickness. In: Towards a Theory of Geometric Graphs, Contemporary Mathematics, vol. 342, pp. 75–86. American Mathematical Society (2004)

    Google Scholar 

  12. Erickson, J., van der Hoog, I., Miltzow, T.: Smoothing the gap between NP and ER. In: Proceedings 61st IEEE Symposium on Foundations of Computer Science (FOCS), pp. 1022–1033. ACM (2020)

    Google Scholar 

  13. Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous geometric graph embeddings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) Graph Drawing. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77537-9_28

  14. Fekete, S., Keldenich, P., Krupke, D., Schirra, S.: CG:SHOP 2022. https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022

  15. Förster, H., Kindermann, P., Miltzow, T., Parada, I., Terziadis, S., Vogtenhuber, B.: Geometric thickness of multigraphs is \(\exists \)R-complete. arXiv preprint arXiv:2312.05010 (2023)

  16. Harary, F.: Research problem. Bull. Am. Math. Soc. 67, 542 (1961)

    Article  MathSciNet  Google Scholar 

  17. Kainen, P.C.: Thickness and coarseness of graphs. Abh. Math. Semin. Univ. Hambg. 39, 88–95 (1973)

    Article  MathSciNet  Google Scholar 

  18. Mansfield, A.: Determining the thickness of graphs is NP-hard. Math. Proc. Camb. Philos. Soc. 93(1), 9–23 (1983)

    Article  MathSciNet  Google Scholar 

  19. Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. Elsevier (1988)

    Google Scholar 

  20. Ringel, G.: Färbungsprobleme auf Flächen und Graphen, Mathematische Monographien [Mathematical Monographs], vol. 2. VEB Deutscher Verlag der Wissenschaften, Berlin (1959)

    Google Scholar 

  21. Schaefer, M.: Complexity of some geometric and topological problems. In: Eppstein, D., Gansner, E.R. (eds.) Graph Drawing. LNCS, vol. 5849, pp. 334–344. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11805-0_32

  22. Schaefer, M.: Complexity of geometric \(k\)-planarity for fixed \(k\). J. Graph Algor. Appl. 25(1), 29–41 (2021)

    Article  MathSciNet  Google Scholar 

  23. Schaefer, M.: On the complexity of some geometric problems with fixed parameters. J. Graph Algor. Appl. 25(1), 195–218 (2021)

    Article  MathSciNet  Google Scholar 

  24. Tutte, W.T.: The thickness of a graph. Indagat. Math. (Proc.) 66, 567–577 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Förster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Förster, H., Kindermann, P., Miltzow, T., Parada, I., Terziadis, S., Vogtenhuber, B. (2024). Geometric Thickness of Multigraphs is \(\exists \mathbb {R}\)-Complete. In: Soto, J.A., Wiese, A. (eds) LATIN 2024: Theoretical Informatics. LATIN 2024. Lecture Notes in Computer Science, vol 14578. Springer, Cham. https://doi.org/10.1007/978-3-031-55598-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55598-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55597-8

  • Online ISBN: 978-3-031-55598-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics