Skip to main content

Minimizing the Size of the Uncertainty Regions for Centers of Moving Entities

  • Conference paper
  • First Online:
LATIN 2024: Theoretical Informatics (LATIN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14578))

Included in the following conference series:

  • 254 Accesses

Abstract

In this paper, we study the problems of computing the 1-center, centroid, and 1-median of objects moving with bounded speed in Euclidean space. We can acquire the exact location of only a constant number of objects (usually one) per unit time, but for every other object, its set of potential locations, called the object’s uncertainty region, grows subject only to the speed limit. As a result, the center of the objects may be at several possible locations, called the center’s uncertainty region. For each of these center problems, we design query strategies to minimize the size of the center’s uncertainty region and compare its performance to an optimal query strategy that knows the trajectories of the objects, but must still query to reduce their uncertainty. For the static case of the 1-center problem in \(\mathbb {R}^1\), we show an algorithm that queries four objects per unit time and is 1-competitive against the optimal algorithm with one query per unit time. For the general case of the 1-center problem in \(\mathbb {R}^1\), the centroid problem in \(\mathbb {R}^d\), and the 1-median problem in \(\mathbb {R}^1\), we prove that the Round-robin scheduling algorithm is the best possible competitive algorithm. For the center of mass problem in \(\mathbb {R}^d\), we provide an \(O(\log {n})\)-competitive algorithm. In addition, for the general case of the 1-center problem in \(\mathbb {R}^d\) (\(d \ge 2\)), we argue that no algorithm can guarantee a bounded competitive ratio against the optimal algorithm.

This work was partially funded by NSERC Discovery Grants and the Institute for Computing, Information and Cognitive Systems (ICICS) at UBC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k-Means and Euclidean k-Median by primal-dual algorithms. SIAM J. Comput. 49(4), FOCS17-97 (2019)

    Google Scholar 

  2. Bādoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 250–257 (2002)

    Google Scholar 

  3. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Comput. Geom. 3(2), 177–191 (1988)

    Article  MathSciNet  Google Scholar 

  4. Bar-Noy, A., Ladner, R.E.: Windows scheduling problems for broadcast systems. SIAM J. Comput. 32(4), 1091–1113 (2003)

    Article  MathSciNet  Google Scholar 

  5. Bar-Noy, A., Ladner, R.E., Tamir, T.: Windows scheduling as a restricted version of bin packing. ACM Trans. Algorithms (TALG) 3(3), 28-es (2007)

    Google Scholar 

  6. Bereg, S., Bhattacharya, B., Kirkpatrick, D., Segal, M.: Competitive algorithms for maintaining a mobile center. Mobile Networks Appl. 11(2), 177–186 (2006)

    Article  Google Scholar 

  7. Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies for geometric computing with uncertainty. Theory Comput. Syst. 38(4), 411–423 (2005)

    Article  MathSciNet  Google Scholar 

  8. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation algorithm for the k-Median problem. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 1–10 (1999)

    Google Scholar 

  9. Chrystal, G.: On the problem to construct the minimum circle enclosing n given points in the plane. Proc. Edinb. Math. Soc. 3(1885), 30–33 (1885)

    Google Scholar 

  10. Cohen, M.B., Lee, Y.T., Miller, G., Pachocki, J., Sidford, A.: Geometric median in nearly linear time. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 9–21 (2016)

    Google Scholar 

  11. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory. Springer, Cham (2004)

    Google Scholar 

  12. Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via the singular value decomposition. Mach. Learn. 56(1), 9–33 (2004)

    Article  Google Scholar 

  13. Durocher, S.: Geometric facility location under continuous motion. Ph.D. thesis, University of British Columbia (2006)

    Google Scholar 

  14. Evans, W., Kirkpatrick, D., Löffler, M., Staals, F.: Query strategies for minimizing the ply of the potential locations of entities moving with different speeds. In: 30th European Workshop on Computational Geometry (2014)

    Google Scholar 

  15. Evans, W., Kirkpatrick, D., Löffler, M., Staals, F.: Competitive query strategies for minimising the ply of the potential locations of moving points. In: Proceedings of the Twenty-Ninth Annual Symposium on Computational Geometry, pp. 155–164 (2013)

    Google Scholar 

  16. Evans, W., Tabatabaee, S.A.: Minimizing the size of the uncertainty regions for centers of moving entities. arXiv preprint arXiv:2304.10028v2 (2024)

  17. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 434–444 (1988)

    Google Scholar 

  18. Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the median with uncertainty. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 602–607 (2000)

    Google Scholar 

  19. Fishburn, P.C., Lagarias, J.C.: Pinwheel scheduling: achievable densities. Algorithmica 34(1), 14–38 (2002)

    Article  MathSciNet  Google Scholar 

  20. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-Center problem. Math. Oper. Res. 10(2), 180–184 (1985)

    Article  MathSciNet  Google Scholar 

  21. Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-time scheduling problem. In: Proceedings of the 22nd Hawaii International Conference of System Science, pp. 693–702 (1989)

    Google Scholar 

  22. Kahan, S.: A model for data in motion. In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, pp. 265–277 (1991)

    Google Scholar 

  23. Kahan, S.H.: Real-time processing of moving data. Ph.D. thesis, University of Washington (1991)

    Google Scholar 

  24. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k-Means clustering. In: Proceedings of the Eighteenth Annual Symposium on Computational Geometry, pp. 10–18 (2002)

    Google Scholar 

  25. Khanna, S., Tan, W.-C.: On computing functions with uncertainty. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 171–182 (2001)

    Google Scholar 

  26. Kupitz, Y., Martini, H.: Geometric aspects of the generalized Fermat-Torricelli problem. Bolyai Soc. Math. Stud. 6, 55–129 (1997)

    MathSciNet  Google Scholar 

  27. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  28. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location problems. SIAM J. Comput. 13(1), 182–196 (1984)

    Article  MathSciNet  Google Scholar 

  29. Suyadi, S.A.: Computing functions of imprecise inputs using query models. Master’s thesis, University of British Columbia (2012)

    Google Scholar 

  30. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0038202

    Chapter  Google Scholar 

  31. Yildirim, E.A.: Two algorithms for the minimum enclosing ball problem. SIAM J. Optim. 19(3), 1368–1391 (2008)

    Article  MathSciNet  Google Scholar 

  32. Zheng, D.W.: Scheduling queries to moving entities to certify many are distant from a region. Master’s thesis, University of British Columbia (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ali Tabatabaee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Evans, W., Tabatabaee, S.A. (2024). Minimizing the Size of the Uncertainty Regions for Centers of Moving Entities. In: Soto, J.A., Wiese, A. (eds) LATIN 2024: Theoretical Informatics. LATIN 2024. Lecture Notes in Computer Science, vol 14578. Springer, Cham. https://doi.org/10.1007/978-3-031-55598-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55598-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55597-8

  • Online ISBN: 978-3-031-55598-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics