Skip to main content

Interactions Between Gut Microbiota and Lipophilic Vitamins in Health and Disease

  • Chapter
  • First Online:
Lipophilic Vitamins in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 28))

  • 35 Accesses

Abstract

The gastrointestinal tract serves as a biologically significant niche for a highly dynamic microbial population described as the gut microbiota. Immunologically, this gut microbiota possesses symbiotic association with the enterocytes and aids in maintenance of intestinal barrier function, and metabolic breakdown of nutrients and drugs. Gut microbiome is known to modulate the intestinal absorption of several dietary products including micronutrients such as vitamins. In turn, several studies have shown that vitamins stimulate or retard the growth of microorganisms in the gut depending on their concentrations in the intestine. Thus, there exists a bidirectional association between vitamins and gut microbiome which plays a role in maintaining the physiological homeostasis. Alterations in the overall gut microbial organization culminates to inflammatory bowel disease, neurological complications, and diabetic episodes among many. Existing paradigm of studies confirm the importance of gut microbiota in the synthetic, metabolic, and functional regulation of most of the water-soluble vitamins in the body. However, similar courses of ideas regarding the lipophilic vitamins remains largely elusive. Herein, we have focused on the detailed understanding of the gut microbiome/lipophilic vitamin interaction axis and its implication in varied disease models studied till date. The understanding of this association shall potentially enable development of novel therapeutic insights and metabolic disease specific nutritional requirements in the years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochemical J 474:1823–1836

    Article  CAS  Google Scholar 

  2. Bengmark S (1998) Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut 42:2–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69:1035s–1045s

    Article  CAS  PubMed  Google Scholar 

  4. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 107:11971–11975

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    Google Scholar 

  6. Rosenbaum M, Knight R, Leibel RL (2015) The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab 26:493–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. science 307:1915–1920

    Google Scholar 

  8. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Google Scholar 

  9. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F and Yamada T (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Google Scholar 

  10. Dey P (2019) Gut microbiota in phytopharmacology: a comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacol Res 147:104367

    Article  CAS  PubMed  Google Scholar 

  11. Li X-Y, He C, Zhu Y, Lu N-H (2020) Role of gut microbiota on intestinal barrier function in acute pancreatitis. World J Gastroenterol 26:2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ottman N, Reunanen J, Meijerink M, Pietilä TE, Kainulainen V, Klievink J, Huuskonen L, Aalvink S, Skurnik M, Boeren S (2017) Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE 12:e0173004

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li X, Liu L, Cao Z, Li W, Li H, Lu C, Yang X, Liu Y (2020) Gut microbiota as an “invisible organ” that modulates the function of drugs. Biomed Pharmacother 121:109653

    Article  PubMed  Google Scholar 

  14. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN (2015) Role of the normal gut microbiota. World J Gastroenterol: WJG 21:8787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Illiano P, Brambilla R, Parolini C (2020) The mutual interplay of gut microbiota, diet and human disease. FEBS J 287:833–855

    Article  CAS  PubMed  Google Scholar 

  16. Brown K, DeCoffe D, Molcan E, Gibson DL (2012) Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 4:1095–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tomasello G, Mazzola M, Leone A, Sinagra E, Zummo G, Farina F, Damiani P, Cappello F, Gerges Geagea A, Jurjus A (2016) Nutrition, oxidative stress and intestinal dysbiosis: influence of diet on gut microbiota in inflammatory bowel diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 160:461–466

    Article  PubMed  Google Scholar 

  18. Kamada N, Seo S-U, Chen GY, Núñez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335

    Article  CAS  PubMed  Google Scholar 

  19. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455:1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiao R, Deng Y, Zhang S, Wolosker MB, Zhu Q, Ren H, Zhang Y (2019) Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere 236:124334

    Article  CAS  PubMed  Google Scholar 

  21. Ferreira CM, Vieira AT, Vinolo MAR, Oliveira FA, Curi R, Martins FS (2014) The central role of the gut microbiota in chronic inflammatory diseases. J Immunol Res 2014:1–12

    Google Scholar 

  22. Karlsson F, Tremaroli V, Nielsen J, Bäckhed F (2013) Assessing the human gut microbiota in metabolic diseases. Diabetes 62:3341–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bisgaard H, Li N, Bonnelykke K, Chawes BLK, Skov T, Paludan-Müller G, Stokholm J, Smith B, Krogfelt KA (2011) Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 128(646–652):e5

    Google Scholar 

  24. Zhang H, Chen Y, Wang Z, Xie G, Liu M, Yuan B, Chai H, Wang W, Cheng P (2022) Implications of gut microbiota in neurodegenerative diseases. Front Immunol 13:785644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stacchiotti V, Rezzi S, Eggersdorfer M, Galli F (2021) Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Crit Rev Food Sci Nutr 61:3211–3232

    Article  CAS  PubMed  Google Scholar 

  26. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26:26191

    PubMed  Google Scholar 

  27. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267

    Article  CAS  PubMed  Google Scholar 

  28. Hur KY, Lee M-S (2015) Gut microbiota and metabolic disorders. Diabetes Metab J 39:198–203

    Article  PubMed  PubMed Central  Google Scholar 

  29. Silva YP, Bernardi A, Frozza RL (2020) The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol 11:25

    Article  Google Scholar 

  30. Ashaolu TJ, Saibandith B, Yupanqui CT, Wichienchot S (2019) Human colonic microbiota modulation and branched chain fatty acids production affected by soy protein hydrolysate. Int J Food Sci Technol 54:141–148

    Article  CAS  Google Scholar 

  31. Oliphant K, Allen-Vercoe E (2019) Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 7:1–15

    Article  Google Scholar 

  32. Kasprzak-Drozd K, Oniszczuk T, Stasiak M, Oniszczuk A (2021) Beneficial effects of phenolic compounds on gut microbiota and metabolic syndrome. Int J Mol Sci 22:3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Augusti PR, Conterato GM, Denardin CC, Prazeres ID, Serra AT, Bronze MR, Emanuelli T (2021) Bioactivity, bioavailability, and gut microbiota transformations of dietary phenolic compounds: Implications for COVID-19. J Nutr Biochem 97:108787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gui D-D, Luo W, Yan B-J, Ren Z, Tang Z-H, Liu L-S, Zhang J-F, Jiang Z-S (2021) Effects of gut microbiota on atherosclerosis through hydrogen sulfide. Eur J Pharmacol 896:173916

    Article  CAS  PubMed  Google Scholar 

  35. Barlow GM, Yu A, Mathur R (2015) Role of the gut microbiome in obesity and diabetes mellitus. Nutr Clin Pract 30:787–797

    Article  CAS  PubMed  Google Scholar 

  36. Blaut M, Clavel T (2007) Metabolic diversity of the intestinal microbiota: implications for health and disease. J Nutr 137:751S-755S

    Article  CAS  PubMed  Google Scholar 

  37. Marchesi J, Shanahan F (2007) The normal intestinal microbiota. Curr Opin Infect Dis 20:508–513

    Article  PubMed  Google Scholar 

  38. Biorender

    Google Scholar 

  39. Gérard P (2013) Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 3:14–24

    Article  PubMed  PubMed Central  Google Scholar 

  40. Koppel N, Maini Rekdal V and Balskus EP (2017) Chemical transformation of xenobiotics by the human gut microbiota. Science 356:eaag2770

    Google Scholar 

  41. Zhang J, Zhang J, Wang R (2018) Gut microbiota modulates drug pharmacokinetics. Drug Metab Rev 50:357–368

    Article  CAS  PubMed  Google Scholar 

  42. Yamamoto EA, Jørgensen TN (2020) Relationships between vitamin D, gut microbiome, and systemic autoimmunity. Front Immunol 10:3141

    Article  PubMed  PubMed Central  Google Scholar 

  43. LeBlanc J, Laiño JE, Del Valle MJ, Vv V, van Sinderen D, Taranto MP, de Valdez GF, de Giori GS, Sesma F (2011) B-Group vitamin production by lactic acid bacteria–current knowledge and potential applications. J Appl Microbiol 111:1297–1309

    Article  CAS  PubMed  Google Scholar 

  44. Hill M (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6:S43–S45

    Article  PubMed  Google Scholar 

  45. Ichihashi T, Takagishi Y, Uchida K, Yamada H (1992) Colonic absorption of menaquinone-4 and menaquinone-9 in rats. J Nutr 122:506–512

    Article  CAS  PubMed  Google Scholar 

  46. LeBlanc JG, Milani C, De Giori GS, Sesma F, Van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24:160–168

    Article  CAS  PubMed  Google Scholar 

  47. Shi Z, Qiu Y, Wang J, Fang Y, Zhang Y, Chen H, Du Q, Zhao Z, Yan C, Yang M (2020) Dysbiosis of gut microbiota in patients with neuromyelitis optica spectrum disorders: a cross sectional study. J Neuroimmunol 339:577126

    Article  CAS  PubMed  Google Scholar 

  48. Feng S, Guo L, Wang H, Yang S, Liu H (2023) Bacterial PncA improves diet-induced NAFLD in mice by enabling the transition from nicotinamide to nicotinic acid. Commun Biol 6:235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang H, Liu Z, Yu T, Zhang Y, Jiao Y, Wang X, Du H, Jiang R, Liu D, Xu Y (2022) The effect of tuina on ulcerative colitis model mice analyzed by gut microbiota and proteomics. Front Microbiol 13:976239

    Article  PubMed  PubMed Central  Google Scholar 

  50. Uebanso T, Shimohata T, Mawatari K, Takahashi A (2020) Functional roles of B-vitamins in the gut and gut microbiome. Mol Nutr Food Res 64:2000426

    Article  CAS  Google Scholar 

  51. Yoshii K, Hosomi K, Sawane K, Kunisawa J (2019) Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front Nutr 6:48

    Article  PubMed  PubMed Central  Google Scholar 

  52. Darwish WS, Chen Z, Li Y, Wu Y, Chiba H, Hui S-P (2020) Identification of cadmium-produced lipid hydroperoxides, transcriptomic changes in antioxidant enzymes, xenobiotic transporters, and pro-inflammatory markers in human breast cancer cells (MCF7) and protection with fat-soluble vitamins. Environ Sci Pollut Res 27:1978–1990

    Article  CAS  Google Scholar 

  53. Sathe MN, Patel AS (2010) Update in pediatrics: focus on fat-soluble vitamins. Nutr Clin Pract 25:340–346

    Article  PubMed  Google Scholar 

  54. Cantorna MT, Snyder L, Arora J (2019) Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis. Crit Rev Biochem Mol Biol 54:184–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abdelhamid L, Luo XM (2018) Retinoic acid, leaky gut, and autoimmune diseases. Nutrients 10:1016

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gommerman JL, Rojas OL, Fritz JH (2014) Re-thinking the functions of IgA+ plasma cells. Gut microbes 5:652–662

    Article  PubMed  PubMed Central  Google Scholar 

  57. Okai S, Usui F, Ohta M, Mori H, Kurokawa K, Matsumoto S, Kato T, Miyauchi E, Ohno H, Shinkura R (2017) Intestinal IgA as a modulator of the gut microbiota. Gut Microbes 8:486–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Harris TA, Gattu S, Propheter DC, Kuang Z, Bel S, Ruhn KA, Chara AL, Edwards M, Zhang C, Jo J-H (2019) Resistin-like molecule α provides vitamin-A-dependent antimicrobial protection in the skin. Cell Host Microbe 25(777–788):e8

    Google Scholar 

  59. Jijon HB, Suarez-Lopez L, Diaz OE, Das S, De Calisto J, Yaffe MB, Pittet MJ, Mora JR, Belkaid Y, Xavier RJ (2018) Intestinal epithelial cell-specific RARα depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system. Mucosal Immunol 11:703–715

    Article  CAS  PubMed  Google Scholar 

  60. Li Y, Gao Y, Cui T, Yang T, Liu L, Li T, Chen J (2017) Retinoic acid facilitates toll-like receptor 4 expression to improve intestinal barrier function through retinoic acid receptor beta. Cell Physiol Biochem 42:1390–1406

    Article  CAS  PubMed  Google Scholar 

  61. Xiao L, Chen B, Feng D, Yang T, Li T, Chen J (2019) TLR4 may be involved in the regulation of colonic mucosal microbiota by vitamin A. Front Microbiol 10:268

    Article  PubMed  PubMed Central  Google Scholar 

  62. Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, Qiu Z, Maher L, Redinbo MR, Phillips RS (2014) Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41:296–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu H-X, Hu Y, Wan Y-JY (2016) Microbiota and bile acid profiles in retinoic acid-primed mice that exhibit accelerated liver regeneration. Oncotarget 7:1096

    Article  PubMed  Google Scholar 

  64. Srinivasan K, Buys EM (2019) Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities. Crit Rev Food Sci Nutr 59:3211–3226

    Article  CAS  PubMed  Google Scholar 

  65. Grizotte-Lake M, Zhong G, Duncan K, Kirkwood J, Iyer N, Smolenski I, Isoherranen N, Vaishnava S (2018) Commensals suppress intestinal epithelial cell retinoic acid synthesis to regulate interleukin-22 activity and prevent microbial dysbiosis. Immunity 49(1103–1115):e6

    Google Scholar 

  66. Tlaskalová-Hogenová H, Štěpánková R, Kozáková H, Hudcovic T, Vannucci L, Tučková L, Rossmann P, Hrnčíř T, Kverka M, Zákostelská Z (2011) The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 8:110–120

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cantorna MT, McDaniel K, Bora S, Chen J, James J (2014) Vitamin D, immune regulation, the microbiota, and inflammatory bowel disease. Exp Biol Med 239:1524–1530

    Article  Google Scholar 

  68. Bivona G, Agnello L, Ciaccio M (2018) The immunological implication of the new vitamin D metabolism. Central Eur J Immunol 43:331–334

    Article  CAS  Google Scholar 

  69. Tabatabaeizadeh S-A, Tafazoli N, Ferns GA, Avan A, Ghayour-Mobarhan M (2018) Vitamin D, the gut microbiome and inflammatory bowel disease. J Res Medi Sci 23

    Google Scholar 

  70. Bashir M, Prietl B, Tauschmann M, Mautner SI, Kump PK, Treiber G, Wurm P, Gorkiewicz G, Högenauer C, Pieber TR (2016) Effects of high doses of vitamin D 3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. Eur J Nutr 55:1479–1489

    Article  CAS  PubMed  Google Scholar 

  71. Luthold RV, Fernandes GR, Franco-de-Moraes AC, Folchetti LG, Ferreira SRG (2017) Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals. Metabolism 69:76–86

    Article  CAS  PubMed  Google Scholar 

  72. Naderpoor N, Mousa A, Fernanda Gomez Arango L, Barrett HL, Dekker Nitert M, de Courten B (2019) Effect of vitamin D supplementation on faecal microbiota: a randomised clinical trial. Nutrients 11:2888

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sassi F, Tamone C, D’Amelio P (2018) Vitamin D: nutrient, hormone, and immunomodulator. Nutrients 10:1656

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bora SA, Kennett MJ, Smith PB, Patterson AD, Cantorna MT (2018) The gut microbiota regulates endocrine vitamin D metabolism through fibroblast growth factor 23. Front Immunol 9:408

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ishizawa M, Akagi D, Makishima M (2018) Lithocholic acid is a vitamin D receptor ligand that acts preferentially in the ileum. Int J Mol Sci 19:1975

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sun J (2016) VDR/vitamin D receptor regulates autophagic activity through ATG16L1. Autophagy 12:1057–1058

    Article  CAS  PubMed  Google Scholar 

  77. Meydani SN, Lewis ED, Wu D (2018) Perspective: should vitamin E recommendations for older adults be increased? Adv Nutr 9:533–543

    Article  PubMed  PubMed Central  Google Scholar 

  78. Galli F, Polidori MC, Stahl W, Mecocci P, Kelly FJ (2007) Vitamin E biotransformation in humans. Vitam Horm 76:263–280

    Article  CAS  PubMed  Google Scholar 

  79. Lee GY, Han SN (2018) The role of vitamin E in immunity. Nutrients 10:1614

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kim J-H, Hwang K-H, Park K-S, Kong ID, Cha S-K (2015) Biological role of anti-aging protein Klotho. J Lifestyle Med 5:1

    Article  PubMed  PubMed Central  Google Scholar 

  81. Choi Y, Lee S, Kim S, Lee J, Ha J, Oh H, Lee Y, Kim Y, Yoon Y (2020) Vitamin E (α-tocopherol) consumption influences gut microbiota composition. Int J Food Sci Nutr 71:221–225

    Article  CAS  PubMed  Google Scholar 

  82. Kim DJ, Yoon S, Ji SC, Yang J, Kim Y-K, Lee S, Yu K-S, Jang I-J, Chung J-Y, Cho J-Y (2018) Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction. Sci Rep 8:11874

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhu W, Yan J, Zhi C, Zhou Q, Yuan X (2019) 1, 25 (OH) 2D3 deficiency-induced gut microbial dysbiosis degrades the colonic mucus barrier in Cyp27b1 knockout mouse model. Gut Pathogens 11:1–11

    Article  CAS  Google Scholar 

  84. Svegliati-Baroni G, Pierantonelli I, Torquato P, Marinelli R, Ferreri C, Chatgilialoglu C, Bartolini D, Galli F (2019) Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease. Free Radical Biol Med 144:293–309

    Article  CAS  Google Scholar 

  85. Torquato P, Marinelli R, Bartolini D and Galli F (2020) Vitamin E: nutritional aspects. Molecular nutrition. Elsevier, pp 447–485

    Google Scholar 

  86. Traber MG, Buettner GR, Bruno RS (2019) The relationship between vitamin C status, the gut-liver axis, and metabolic syndrome. Redox Biol 21:101091

    Article  CAS  PubMed  Google Scholar 

  87. Ran L, Liu AB, Lee MJ, Xie P, Lin Y, Yang CS (2019) Effects of antibiotics on degradation and bioavailability of different vitamin E forms in mice. BioFactors 45:450–462

    Article  CAS  PubMed  Google Scholar 

  88. Fenn K, Strandwitz P, Stewart EJ, Dimise E, Rubin S, Gurubacharya S, Clardy J, Lewis K (2017) Quinones are growth factors for the human gut microbiota. Microbiome 5:1–11

    Article  Google Scholar 

  89. Walther B, Karl JP, Booth SL, Boyaval P (2013) Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr 4:463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pan M-H, Maresz K, Lee P-S, Wu J-C, Ho C-T, Popko J, Mehta DS, Stohs SJ Badmaev11 V inhibition of TNF-a, IL-1a, and IL-1b by pretreatment of human monocyte-derived macrophages with menaquinone-7 and cell activation with TLR agonists in vitro

    Google Scholar 

  91. Zheng X, Huang F, Zhao A, Lei S, Zhang Y, Xie G, Chen T, Qu C, Rajani C, Dong B (2017) Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biol 15:1–15

    Article  Google Scholar 

  92. Sato T, Schurgers LJ, Uenishi K (2012) Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr J 11:1–4

    Article  Google Scholar 

  93. Galli F, Azzi A, Birringer M, Cook-Mills JM, Eggersdorfer M, Frank J, Cruciani G, Lorkowski S, Özer NK (2017) Vitamin E: emerging aspects and new directions. Free Radical Biol Med 102:16–36

    Article  CAS  Google Scholar 

  94. Aydin S (2017) Can vitamin K synthesis altered by dysbiosis of microbiota be blamed in the etiopathogenesis of venous thrombosis? Biosci Microbiota Food Health 36:73–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rosen CE, Palm NW (2018) Navigating the microbiota seas: triangulation finds a way forward. Cell Host Microbe 23:1–3

    Article  CAS  PubMed  Google Scholar 

  96. Vieujean S, Caron B, Haghnejad V, Jouzeau J-Y, Netter P, Heba A-C, Ndiaye NC, Moulin D, Barreto G, Danese S (2022) Impact of the exposome on the epigenome in inflammatory bowel disease patients and animal models. Int J Mol Sci 23:7611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Aggeletopoulou I, Marangos M, Assimakopoulos SF, Mouzaki A, Thomopoulos K, Triantos C (2023) Vitamin D and microbiome: molecular interaction in inflammatory bowel disease pathogenesis. Am J Pathol

    Google Scholar 

  98. Kvietys PR, Yaqinuddin A and Al Kattan W (2014) Gastrointestinal mucosal defense system. Biota Publishing

    Google Scholar 

  99. Schroeder BO (2019) Fight them or feed them: how the intestinal mucus layer manages the gut microbiota. Gastroenterol Rep 7:3–12

    Article  Google Scholar 

  100. Wu S, Zhang Y-g, Lu R, Xia Y, Zhou D, Petrof EO, Claud EC, Chen D, Chang EB, Carmeliet G (2015) Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut 64:1082–1094

    Article  CAS  PubMed  Google Scholar 

  101. He L, Liu T, Shi Y, Tian F, Hu H, Deb DK, Chen Y, Bissonnette M, Li YC (2018) Gut epithelial vitamin D receptor regulates microbiota-dependent mucosal inflammation by suppressing intestinal epithelial cell apoptosis. Endocrinology 159:967–979

    Article  CAS  PubMed  Google Scholar 

  102. Lagishetty V, Misharin AV, Liu NQ, Lisse TS, Chun RF, Ouyang Y, McLachlan SM, Adams JS, Hewison M (2010) Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis. Endocrinology 151:2423–2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ooi JH, Li Y, Rogers CJ, Cantorna MT (2013) Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate–induced colitis. J Nutr 143:1679–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cantorna MT, Lin Y-D, Arora J, Bora S, Tian Y, Nichols RG, Patterson AD (2019) Vitamin D regulates the microbiota to control the numbers of RORγt/FoxP3+ regulatory T cells in the colon. Front Immunol 10:1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Garg M, Hendy P, Ding JN, Shaw S, Hold G, Hart A (2018) The effect of vitamin D on intestinal inflammation and faecal microbiota in patients with ulcerative colitis. J Crohns Colitis 12:963–972

    Article  PubMed  Google Scholar 

  106. Olbjørn C, Cvancarova Småstuen M, Thiis-Evensen E, Nakstad B, Vatn MH, Jahnsen J, Ricanek P, Vatn S, Moen AE, Tannæs TM (2019) Fecal microbiota profiles in treatment-naïve pediatric inflammatory bowel disease–associations with disease phenotype, treatment, and outcome. Clin Exp Gastroenterol 12:37–49

    Google Scholar 

  107. Zhou Y, Zhi F (2016) Lower level of bacteroides in the gut microbiota is associated with inflammatory bowel disease: a meta-analysis. BioMed Res Int 2016:1–9

    Google Scholar 

  108. Charoenngam N, Shirvani A, Kalajian TA, Song A, Holick MF (2020) The effect of various doses of oral vitamin D3 supplementation on gut microbiota in healthy adults: a randomized, double-blinded, dose-response study. Anticancer Res 40:551–556

    Article  CAS  PubMed  Google Scholar 

  109. Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28:203

    PubMed  PubMed Central  Google Scholar 

  110. Romijn JA, Corssmit EP, Havekes LM, Pijl H (2008) Gut–brain axis. Curr Opin Clin Nutr Metab Care 11:518–521

    Article  CAS  PubMed  Google Scholar 

  111. Sarkar SR, Mazumder PM, Chatterjee K, Sarkar A, Adhikary M, Mukhopadhyay K, Banerjee S (2021) Saccharomyces boulardii ameliorates gut dysbiosis associated cognitive decline. Physiol Behav 236:113411

    Article  PubMed  Google Scholar 

  112. Indyk H, Shearer M, Woollard D (2003) Vitamin K| properties and determination

    Google Scholar 

  113. Wagatsuma K, Yamada S, Ao M, Matsuura M, Tsuji H, Iida T, Miyamoto K, Oka K, Takahashi M, Tanaka K (2019) Diversity of gut microbiota affecting serum level of undercarboxylated osteocalcin in patients with Crohn’s disease. Nutrients 11:1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chouet J, Ferland G, Féart C, Rolland Y, Presse N, Boucher K, Barberger-Gateau P, Beauchet O, Annweiler C (2015) Dietary vitamin K intake is associated with cognition and behaviour among geriatric patients: the CLIP study. Nutrients 7:6739–6750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chatterjee K, Mazumder PM, Sarkar SR, Saha R, Chatterjee A, Sarkar B, Banerjee S (2023) Neuroprotective effect of vitamin K2 against gut dysbiosis associated cognitive decline. Physiol Behav 269:114252

    Google Scholar 

  116. Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136:2003–2014

    Article  PubMed  Google Scholar 

  117. Yu Y-x, Li Y-p, Gao F, Hu Q-s, Zhang Y, Chen D, Wang G-h (2016) Vitamin K2 suppresses rotenone-induced microglial activation in vitro. Acta Pharmacol Sin 37:1178–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ramazani E, Fereidoni M, Tayarani-Najaran Z (2019) Protective effects of vitamin K2 on 6-OHDA-induced apoptosis in PC12 cells through modulation bax and caspase-3 activation. Mol Biol Rep 46:5777–5783

    Article  CAS  PubMed  Google Scholar 

  119. Dinan TG, Cryan JF (2017) Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 595:489–503

    Article  CAS  PubMed  Google Scholar 

  120. Laval L, Martin R, Natividad J, Chain F, Miquel S, De Maredsous CD, Capronnier S, Sokol H, Verdu E, van Hylckama VJ (2015) Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2–165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut microbes 6:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fang X (2016) Potential role of gut microbiota and tissue barriers in Parkinson’s disease and amyotrophic lateral sclerosis. Int J Neurosci 126:771–776

    Article  CAS  PubMed  Google Scholar 

  122. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto J-M, Kennedy S (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546

    Article  PubMed  Google Scholar 

  123. Hu X, Wang T, Jin F (2016) Alzheimer’s disease and gut microbiota. Sci China Life Sci 59:1006–1023

    Article  CAS  PubMed  Google Scholar 

  124. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, Mutlu E, Shannon KM (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30:1351–1360

    Article  CAS  PubMed  Google Scholar 

  125. Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, Kaakkola S, Eerola-Rautio J, Pohja M (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358

    Article  PubMed  Google Scholar 

  126. Bergstrom KS, Xia L (2013) Mucin-type O-glycans and their roles in intestinal homeostasis. Glycobiology 23:1026–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Van Ballegooijen AJ, Pilz S, Tomaschitz A, Grübler MR, Verheyen N (2017) The synergistic interplay between vitamins D and K for bone and cardiovascular health: a narrative review. Int J Endocrinol 2017:1–12.

    Google Scholar 

  128. Goddek S (2020) Vitamin D3 and K2 and their potential contribution to reducing the COVID-19 mortality rate. Int J Infect Dis 99:286–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ellis JL, Karl JP, Oliverio AM, Fu X, Soares JW, Wolfe BE, Hernandez CJ, Mason JB, Booth SL (2021) Dietary vitamin K is remodeled by gut microbiota and influences community composition. Gut Microbes 13:1887721

    Article  PubMed  PubMed Central  Google Scholar 

  130. Prietl B, Treiber G, Pieber TR, Amrein K (2013) Vitamin D and immune function. Nutrients 5:2502–2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lai Y, Masatoshi H, Ma Y, Guo Y, Zhang B (2022) Role of vitamin K in intestinal health. Front Immunol 12:791565

    Article  PubMed  PubMed Central  Google Scholar 

  132. Singh P, Rawat A, Alwakeel M, Sharif E, Al Khodor S (2020) The potential role of vitamin D supplementation as a gut microbiota modifier in healthy individuals. Sci Rep 10:21641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Krajewska M, Witkowska-Sędek E, Rumińska M, Stelmaszczyk-Emmel A, Sobol M, Majcher A, Pyrżak B (2022) Vitamin d effects on selected anti-inflammatory and pro-inflammatory markers of obesity-related chronic inflammation. Front Endocrinol 13:920340

    Article  Google Scholar 

  134. Xv F, Chen J, Duan L, Li S (2018) Research progress on the anticancer effects of vitamin K2. Oncol Lett 15:8926–8934

    PubMed  PubMed Central  Google Scholar 

  135. Gholami H, Chmiel JA, Burton JP, Maleki Vareki S (2023) The role of microbiota-derived vitamins in immune homeostasis and enhancing cancer immunotherapy. Cancers 15:1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Adams JS, Hewison M (2010) Update in vitamin D. J Clin Endocrinol Metab 95:471–478

    Article  PubMed  PubMed Central  Google Scholar 

  137. Battault S, Whiting S, Peltier S, Sadrin S, Gerber G, Maixent J (2013) Vitamin D metabolism, functions and needs: from science to health claims. Eur J Nutr 52:429–441

    Article  CAS  PubMed  Google Scholar 

  138. Dionne S, Duchatelier C-F, Seidman EG (2017) The influence of vitamin D on M1 and M2 macrophages in patients with Crohn’s disease. Innate Immunol 23:557–565

    Article  CAS  Google Scholar 

  139. Griffin MD, Lutz WH, Phan VA, Bachman LA, McKean DJ, Kumar R (2000) Potent inhibition of dendritic cell differentiation and maturation by vitamin D analogs. Biochem Biophys Res Commun 270:701–708

    Article  CAS  PubMed  Google Scholar 

  140. Bruce D, Yu S, Ooi JH, Cantorna MT (2011) Converging pathways lead to overproduction of IL-17 in the absence of vitamin D signaling. Int Immunol 23:519–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Griffin MD, Lutz W, Phan VA, Bachman LA, McKean DJ, Kumar R (2001) Dendritic cell modulation by 1α, 25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc Natl Acad Sci 98:6800–6805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cerhan JR, O’Connor HM, Fredericksen ZS, Liebow M, Macon WR, Wang AH, Zent CS, Ansell SM, Slager SL, Call TG (2010) Vitamin K intake and risk of non-Hodgkin lymphoma (NHL). Can Res 70:2811–2811

    Article  Google Scholar 

  143. Dragh MA, Xu Z, Al-Allak ZS, Hong L (2017) Vitamin K2 prevents lymphoma in Drosophila. Sci Rep 7:17047

    Article  PubMed  PubMed Central  Google Scholar 

  144. Borchmann S, Cirillo M, Goergen H, Meder L, Sasse S, Kreissl S, Bröckelmann PJ, von Tresckow B, Fuchs M, Ullrich RT (2019) Pretreatment vitamin D deficiency is associated with impaired progression-free and overall survival in Hodgkin lymphoma. J Clin Oncol 37:3528–3537

    Article  CAS  PubMed  Google Scholar 

  145. Myneni VD, Mezey E (2018) Immunomodulatory effect of vitamin K2: implications for bone health. Oral Dis 24:67–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Morowitz MJ, Carlisle EM, Alverdy JC (2011) Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surgical Clinics 91:771–785

    PubMed  Google Scholar 

  147. Trials.gov N-USNLoM-C

    Google Scholar 

  148. Trials.gov N-NLoM-C

    Google Scholar 

  149. Medicine-ClinicalTrials.gov N-USNLo

    Google Scholar 

  150. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Man Lei Y, Jabri B, Alegre M-L (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079–1084

    Article  PubMed  PubMed Central  Google Scholar 

  152. Lin R (2016) Crosstalk between vitamin D metabolism, VDR signalling, and innate immunity. BioMed Res Int 2016:1–5

    Google Scholar 

  153. Pham VT, Fehlbaum S, Seifert N, Richard N, Bruins MJ, Sybesma W, Rehman A, Steinert RE (2021) Effects of colon-targeted vitamins on the composition and metabolic activity of the human gut microbiome—a pilot study. Gut Microbes 13:1875774

    Article  PubMed  PubMed Central  Google Scholar 

  154. Li J, Lin JC, Wang H, Peterson JW, Furie BC, Furie B, Booth SL, Volpe JJ, Rosenberg PA (2003) Novel role of vitamin k in preventing oxidative injury to developing oligodendrocytes and neurons. J Neurosci 23:5816–5826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shiels PG, McGuinness D, Eriksson M, Kooman JP, Stenvinkel P (2017) The role of epigenetics in renal ageing. Nat Rev Nephrol 13:471–482

    Article  CAS  PubMed  Google Scholar 

  156. Mishima E, Ito J, Wu Z, Nakamura T, Wahida A, Doll S, Tonnus W, Nepachalovich P, Eggenhofer E, Aldrovandi M (2022) A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608:778–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Igarashi M, Yogiashi Y, Mihara M, Takada I, Kitagawa H, Kato S (2007) Vitamin K induces osteoblast differentiation through pregnane X receptor-mediated transcriptional control of the Msx2 gene. Mol Cell Biol 27:7947–7954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ichikawa T, Horie-Inoue K, Ikeda K, Blumberg B, Inoue S (2007) Vitamin K2 induces phosphorylation of protein kinase A and expression of novel target genes in osteoblastic cells. J Mol Endocrinol 39:239–247

    Article  CAS  PubMed  Google Scholar 

  159. Simes DC, Viegas CS, Araújo N, Marreiros C (2020) Vitamin K as a diet supplement with impact in human health: current evidence in age-related diseases. Nutrients 12:138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Simes DC, Viegas CS, Araújo N, Marreiros C (2019) Vitamin K as a powerful micronutrient in aging and age-related diseases: pros and cons from clinical studies. Int J Mol Sci 20:4150

    Article  PubMed  PubMed Central  Google Scholar 

  161. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  PubMed  PubMed Central  Google Scholar 

  162. Dai L, Schurgers LJ, Shiels PG, Stenvinkel P (2020) Early vascular ageing in chronic kidney disease: impact of inflammation, vitamin K, senescence and genomic damage. Nephrol Dial Transp 35:ii31–ii37

    Google Scholar 

  163. Harshman SG, Finnan EG, Barger KJ, Bailey RL, Haytowitz DB, Gilhooly CH, Booth SL (2017) Vegetables and mixed dishes are top contributors to phylloquinone intake in US adults: data from the 2011–2012 NHANES. J Nutr 147:1308–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Dai L, Mafra D, Shiels PG, Hackeng TM, Stenvinkel P, Schurgers LJ (2023) Vitamin K and hallmarks of ageing: focus on diet and gut microbiome. Nutrients 15:2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Usui Y, Tanimura H, Nishimura N, Kobayashi N, Okanoue T, Ozawa K (1990) Vitamin K concentrations in the plasma and liver of surgical patients. Am J Clin Nutr 51:846–852

    Article  CAS  PubMed  Google Scholar 

  166. Marques TM, Wall R, Ross RP, Fitzgerald GF, Ryan CA, Stanton C (2010) Programming infant gut microbiota: influence of dietary and environmental factors. Curr Opin Biotechnol 21:149–156

    Article  CAS  PubMed  Google Scholar 

  167. Reinhardt C, Reigstad CS, Bäckhed F (2009) Intestinal microbiota during infancy and its implications for obesity. J Pediatr Gastroenterol Nutr 48:249–256

    Article  PubMed  Google Scholar 

  168. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci 101:15718–15723

    Article  PubMed  PubMed Central  Google Scholar 

  169. Argollo M, Gilardi D, Peyrin-Biroulet C, Chabot J-F, Peyrin-Biroulet L, Danese S (2019) Comorbidities in inflammatory bowel disease: a call for action. Lancet Gastroenterol Hepatol 4:643–654

    Article  PubMed  Google Scholar 

  170. Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P (2017) The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol 15:630–638

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Institutes of Health R01HL148711 to SK and UH bridge fund to KMB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saisudha Koka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datta, S., Boini, K.M., Koka, S. (2024). Interactions Between Gut Microbiota and Lipophilic Vitamins in Health and Disease. In: Tappia, P.S., Shah, A.K., Dhalla, N.S. (eds) Lipophilic Vitamins in Health and Disease. Advances in Biochemistry in Health and Disease, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-55489-6_6

Download citation

Publish with us

Policies and ethics