Skip to main content

Fate and Transport of Emerging Pollutants in Aquatic Environment

  • Chapter
  • First Online:
Novel Approaches Towards Wastewater Treatment

Part of the book series: Springer Water ((SPWA))

  • 60 Accesses

Abstract

This chapter provides an overview of some of the typical and widely publicized emerging pollutants that occur in various environmental matrices. These include, among others, phthalates, environmental endocrine disruptors, microplastics and antibiotics. The text focuses on the different types of these emerging pollutants, their respective characteristics, the main sources of emerging pollutants, their distribution in the environment, and the ecological hazards of these emerging pollutants. In addition to this, biotic and abiotic treatment technologies for emerging pollutants and their migration in wastewater treatment plants are also outlined. Biotic treatment technologies, as the main removal methods of emerging pollutants, mainly include aerobic sludge, anaerobic sludge, isolated bacterial strains, genetically engineered bacteria, and bioactivated carbon; and abiotic treatment technologies mainly include adsorption, coagulation, membrane separation, and chemical oxidation. Various biotic and abiotic treatment technologies have been shown to have a good effect on the treatment of emerging pollutants. However, compared with abiotic treatments, biotic treatments have the advantages of economy, easy operation and no secondary pollution. Therefore, the fate of emerging pollutants in different biotic treatment units of actual wastewater treatment plants in countries around the world are briefly described. This chapter summarizes the sources, transport, and treatment of emerging pollutants, which will help to raise awareness of emerging pollutants and make targeted treatment plans for their transport in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acero JL, Benitez FJ, Leal AI, Real FJ, Teva F (2010) Membrane filtration technologies applied to municipal secondary effluents for potential reuse. J Hazard Mater 177(1):390–398. https://doi.org/10.1016/j.jhazmat.2009.12.045

    Article  CAS  Google Scholar 

  2. Acero JL, Javier Benitez F, Real FJ, Teva F (2012) Coupling of adsorption, coagulation, and ultrafiltration processes for the removal of emerging contaminants in a secondary effluent. Chem Eng J 210:1–8. https://doi.org/10.1016/j.cej.2012.08.043

    Article  CAS  Google Scholar 

  3. Adeniyi AA, Okedeyi OO, Yusuf KA (2011) Flame ionization gas chromatographic determination of phthalate esters in water surface sediments and fish species in the Ogun river catchments Ketu Lagos Nigeria. Environ Monit Assess 172(1–4):561–569. https://doi.org/10.1007/s10661-010-1354-2

  4. Ahmad HA, Ahmad S, Cui Q, Wang Z, Wei H, Chen X et al (2022) The environmental distribution and removal of emerging pollutants, highlighting the importance of using microbes as a potential degrader: a review. Sci Total Environ 809:151926

    Google Scholar 

  5. Ahmed MB, Zhou JL, Ngo HH, Guo W, Thomaidis NS, Xu J (2017) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater 323:274–298. https://doi.org/10.1016/j.jhazmat.2016.04.045

    Article  CAS  Google Scholar 

  6. Ahmed S, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA et al (2021) Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J Hazard Mater 416:125912

    Google Scholar 

  7. Ahn C, Jeung EB (2023) Endocrine-disrupting chemicals and disease endpoints. Int J Mol Sci 24(6). https://doi.org/10.3390/ijms24065342

  8. Al-Qodah Z, Al-Shannag M, Bani-Melhem K, Assirey E, Yahya MA, Al-Shawabkeh A (2018) Free radical-assisted electrocoagulation processes for wastewater treatment. Environ Chem Lett 16(3):695–714. https://doi.org/10.1007/s10311-018-0711-1

    Article  CAS  Google Scholar 

  9. Alhefeiti MA, Athamneh K, Vijayan R, Ashraf SS (2021). Bioremediation of various aromatic and emerging pollutants by Bacillus cereus sp. isolated from petroleum sludge. Water Sci Technol 83(7):1535–1547. https://doi.org/10.2166/wst.2021.065

  10. de Amorim KP, Romualdo LL, Andrade LS (2013) Electrochemical degradation of sulfamethoxazole and trimethoprim at boron-doped diamond electrode: performance, kinetics and reaction pathway. Sep Purif Technol 120:319–327. https://doi.org/10.1016/j.seppur.2013.10.010

    Article  CAS  Google Scholar 

  11. Barnabé S, Beauchesne I, Cooper DG, Nicell JA (2007) Plasticizers and their degradation products in the process streams of a large urban physicochemical sewage treatment plant. Water Res. https://doi.org/10.1016/j.watres.2007.07.043

    Article  Google Scholar 

  12. Bell KY, Wells MM, Traexler KA, Pellegrin ML, Morse A, Bandy J (2011) Emerging pollutants. Water Environ Res 83(10):1906–1984. https://doi.org/10.2175/106143011x13075599870298

    Article  CAS  Google Scholar 

  13. Bendz D, Paxéus NA, Ginn TR, Loge FJ (2005) Occurrence and fate of pharmaceutically active compounds in the environment a case study: Höje River in Sweden. J Hazard Mater 122(3):195–204. https://doi.org/10.1016/j.jhazmat.2005.03.012

  14. Bolong N, Ismail AF, Salim MR, Rana D, Matsuura T, Tabe-Mohammadi A (2010) Negatively charged polyethersulfone hollow fiber nanofiltration membrane for the removal of bisphenol A from wastewater. Sep Purif Technol 73(2):92–99. https://doi.org/10.1016/j.seppur.2010.01.001

    Article  CAS  Google Scholar 

  15. Bracamontes Ruelas A, Ordaz-Diaz L, Bailon-Salas A, Rios-Saucedo J, Reyes-Vidal Y, Reynoso-Cuevas L (2022) Emerging pollutants in wastewater, advanced oxidation processes as an alternative treatment and perspectives. Processes 10:1–23. https://doi.org/10.3390/pr10051041

    Article  CAS  Google Scholar 

  16. Bracamontes-Ruelas AR, Reyes-Vidal Y, Irigoyen-Campuzano JR, Reynoso-Cuevas L (2023) Simultaneous oxidation of emerging pollutants in real wastewater by the advanced fenton oxidation process. Catalysts 13(4):748. Retrieved from https://www.mdpi.com/2073-4344/13/4/748

  17. Cao X, Luo J, Woodley JM, Wan Y (2016) Bioinspired multifunctional membrane for aquatic micropollutants removal. ACS Appl Mater Interfaces 8(44):30511–30522. https://doi.org/10.1021/acsami.6b10823

    Article  CAS  Google Scholar 

  18. Celić M, Farré M, Lopez de Alda M, Perez S, Barceló D, Petrović M (2017) Chapter 15—environmental analysis: emerging pollutants. In: Fanali S, Haddad PR, Poole CF, Riekkola M-L (eds) Liquid chromatography, 2nd edn. Elsevier, pp 451–477

    Google Scholar 

  19. Chen Z, Wang H, Chen Z, Ren N, Wang A, Shi Y, Li X (2011) Performance and model of a full-scale up-flow anaerobic sludge blanket (UASB) to treat the pharmaceutical wastewater containing 6-APA and amoxicillin. J Hazard Mater 185(2):905–913. https://doi.org/10.1016/j.jhazmat.2010.09.106

    Article  CAS  Google Scholar 

  20. Cheng H-Y, Hou Y-N, Zhang X, Yang Z-N, Xu T, Wang A-J (2017) Activating electrochemical catalytic activity of bio-palladium by hybridizing with carbon nanotube as “e−Bridge.” Sci Rep 7(1):16588. https://doi.org/10.1038/s41598-017-16880-7

    Article  CAS  Google Scholar 

  21. Chi J (2009) Phthalate acid esters in Potamogeton crispus L. from Haihe River China. Chemosphere 77(1):48–52. https://doi.org/10.1016/j.chemosphere.2009.05.043

  22. Chopra S, Kumar D (2020) Characterization, optimization and kinetic study of diclofenac degradation by novel bacterial strains and their synthetic consortia. Bioremediat J 24(2–3):150–170. https://doi.org/10.1080/10889868.2020.1793723

    Article  CAS  Google Scholar 

  23. Chopra S, Kumar D (2022) Characterization and biodegradation of ibuprofen by Bacillus siamensis strain DSI-1 isolated from wastewater. Rend Fis Acc Lincei 33(3):643–652. https://doi.org/10.1007/s12210-022-01085-6

    Article  Google Scholar 

  24. Chopra S, Kumar D (2023) Characterization and biodegradation of paracetamol by biomass of Bacillus licheniformis strain PPY-2 isolated from wastewater. Rend Fis Acc Lincei 34(2):491–501. https://doi.org/10.1007/s12210-023-01140-w

    Article  Google Scholar 

  25. Correa-Sanchez S, Peñuela GA (2022) Peracetic acid-based advanced oxidation processes for the degradation of emerging pollutants: a critical review. J Water Process Eng 49:102986. https://doi.org/10.1016/j.jwpe.2022.102986

    Article  Google Scholar 

  26. Dargnat C, Teil M-J, Chevreuil M, Blanchard M (2009) Phthalate removal throughout wastewater treatment plant. Sci Total Environ 407(4):1235–1244. https://doi.org/10.1016/j.scitotenv.2008.10.027

  27. Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214(6):442–448. https://doi.org/10.1016/j.ijheh.2011.08.002

    Article  CAS  Google Scholar 

  28. Domínguez JR, González T, Palo P, Sánchez-Martín J (2010) Anodic oxidation of ketoprofen on boron-doped diamond (BDD) electrodes. Role of operative parameters. Chem Eng J 162(3):1012–1018. https://doi.org/10.1016/j.cej.2010.07.010

  29. Du J, Fan Y, Qian X (2015) Occurrence and behavior of pharmaceuticals in sewage treatment plants in eastern China. Front Environ Sci Eng 9(4):725–730. https://doi.org/10.1007/s11783-014-0661-1

    Article  CAS  Google Scholar 

  30. Egbuna C, Amadi CN, Patrick-Iwuanyanwu KC, Ezzat SM, Awuchi CG, Ugonwa PO, Orisakwe OE (2021) Emerging pollutants in Nigeria: a systematic review. Environ Toxicol Pharmacol. https://doi.org/10.1016/j.etap.2021.103638

    Article  Google Scholar 

  31. Enyoh CE, Verla AW, Qingyue W, Ohiagu FO, Chowdhury AH, Enyoh EC et al (2020) An overview of emerging pollutants in air: method of analysis and potential public health concern from human environmental exposure. Trends Environ Analy Chem. https://doi.org/10.1016/j.teac.2020.e00107

  32. Falås P, Wick A, Castronovo S, Habermacher J, Ternes TA, Joss A (2016) Tracing the limits of organic micropollutant removal in biological wastewater treatment. Water Res 95:240–249. https://doi.org/10.1016/j.watres.2016.03.009

    Article  CAS  Google Scholar 

  33. Fromme H, Küchler T, Otto T, Pilz K, Müller J, Wenzel A (2002) Occurrence of phthalates and bisphenol A and F in the environment. Water Res 36(6):1429–1438. https://doi.org/10.1016/S0043-1354(01)00367-0

  34. Gani KM, Kazmi AA (2016) Comparative assessment of phthalate removal and risk in biological wastewater treatment systems of developing countries and small communities. Sci Total Environ 569–570:661–671. https://doi.org/10.1016/j.scitotenv.2016.06.182

    Article  CAS  Google Scholar 

  35. Ganzenko O, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2014) Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environ Sci Pollut Res 21(14):8493–8524. https://doi.org/10.1007/s11356-014-2770-6

    Article  CAS  Google Scholar 

  36. Gao D, Huang X, Tao Y (2015) A critical review of NanoSIMS in analysis of microbial metabolic activities at single-cell level. Crit Rev Biotechnol. https://doi.org/10.3109/07388551.2015.1057550

    Article  Google Scholar 

  37. Gao D, Li Z, Guan J, Li Y, Ren N (2014) Removal of surfactants nonylphenol ethoxylates from municipal sewage-comparison of an A/O process and biological aerated filters. Chemosphere 97:130–134. https://doi.org/10.1016/j.chemosphere.2013.10.083

    Article  CAS  Google Scholar 

  38. Gao D, Li Z, Guan J, Liang H (2017) Seasonal variations in the concentration and removal of nonylphenol ethoxylates from the wastewater of a sewage treatment plant. J Environ Sci (China) 54:217–223. https://doi.org/10.1016/j.jes.2016.02.005

    Article  CAS  Google Scholar 

  39. Gao DW, Li Z, Guan JX, Liang H (2017) Seasonal changes and spatial distributions of nonylphenol ethoxylates in sewage treatment plant with BAF process. Environ Technol 38(4):406–412. https://doi.org/10.1080/09593330.2016.1196737

    Article  CAS  Google Scholar 

  40. Gao D, Li Z, Wang H, Liang H (2018) An overview of phthalate acid ester pollution in China over the last decade: environmental occurrence and human exposure. Sci Total Environ 645:1400–1409. https://doi.org/10.1016/j.scitotenv.2018.07.093

    Article  CAS  Google Scholar 

  41. Gao D, Li Z, Wen Z, Ren N (2013) Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere. https://doi.org/10.1016/j.chemosphere.2013.08.009

    Article  Google Scholar 

  42. Gao D, Li Z, Wen Z, Ren N (2014) Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere 95:24–32. https://doi.org/10.1016/j.chemosphere.2013.08.009

    Article  CAS  Google Scholar 

  43. Gao D-W, Wen Z-D (2015) Phthalate esters in the environment: a critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2015.09.148

    Article  Google Scholar 

  44. Gao X, Shi X, Cui Y, Li M, Zhang R, Qian X, Jiang Y (2011) Organic pollutants and ambient severity for the drinking water source of western Taihu Lake. Ecotoxicol 20(5):959–967. https://doi.org/10.1007/s10646-011-0681-6

  45. Garcia-Segura S, Keller J, Brillas E, Radjenovic J (2015) Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. J Hazard Mater 283:551–557. https://doi.org/10.1016/j.jhazmat.2014.10.003

    Article  CAS  Google Scholar 

  46. Gasperi J, Garnaud S, Rocher V, Moilleron R (2009) Priority pollutants in surface waters and settleable particles within a densely urbanized area: case study of Paris (France). Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2009.01.024

    Article  Google Scholar 

  47. Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, van der Ploeg M et al (2015) Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res 3(1):57–65.https://doi.org/10.1016/j.iswcr.2015.03.002

  48. Gonsioroski A, Mourikes VE, Flaws JA (2020) Endocrine disruptors in water and their effects on the reproductive system. Int J Mol Sci. https://doi.org/10.3390/ijms21061929

    Article  Google Scholar 

  49. Gothwal R, Shashidhar T (2015) Antibiotic pollution in the environment: a review. CLEAN Soil Air Water 43(4):479–489. https://doi.org/10.1002/clen.201300989

  50. Graham DW, Olivares-Rieumont S, Knapp CW, Lima L, Werner D, Bowen E (2011) Antibiotic resistance gene abundances associated with waste discharges to the Almendares River near Havana, Cuba. Environ Sci Technol. https://doi.org/10.1021/es102473z

  51. Grandclément C, Piram A, Petit M-E, Seyssiecq I, Laffont-Schwob I, Vanot G et al (2020) Biological removal and fate assessment of diclofenac using Bacillus subtilis and Brevibacillus laterosporus strains and ecotoxicological effects of diclofenac and 4′-hydroxy-diclofenac. J Chem 2020:9789420. https://doi.org/10.1155/2020/9789420

  52. Grandclément C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N et al (2017) From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res 111:297–317

    Google Scholar 

  53. Gur-Reznik S, Koren-Menashe I, Heller-Grossman L, Rufel O, Dosoretz CG (2011) Influence of seasonal and operating conditions on the rejection of pharmaceutical active compounds by RO and NF membranes. Desalination 277(1):250–256. https://doi.org/10.1016/j.desal.2011.04.029

    Article  CAS  Google Scholar 

  54. Göbel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci Total Environ 372(2):361–371. https://doi.org/10.1016/j.scitotenv.2006.07.039

    Article  CAS  Google Scholar 

  55. Hauser R, Calafat AM (2005) Phthalates and human health. Occup Environ Med 62(11):806. https://doi.org/10.1136/oem.2004.017590

  56. He et al (2013) Spatio-temporal distributions and the ecological and health risks of phthalate esters (PAEs) in the surface water of a large shallow. Chinese lake Science of The Total Environment 461–462; 672–680. https://doi.org/10.1016/j.scitotenv.2013.05.049

  57. Hejna M, Moscatelli A, Stroppa N, Onelli E, Pilu S, Baldi A, Rossi L (2020) Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system. Chemosphere 241:125018

    Article  CAS  Google Scholar 

  58. Heo J, Flora JRV, Her N, Park Y-G, Cho J, Son A, Yoon Y (2012) Removal of bisphenol A and 17β-estradiol in single walled carbon nanotubes–ultrafiltration (SWNTs–UF) membrane systems. Sep Purif Technol 90:39–52. https://doi.org/10.1016/j.seppur.2012.02.007

    Article  CAS  Google Scholar 

  59. Huang M-Z, Ma Y-W, Wang Y, Wan J-Q, Zhang H-P (2010) The fate of di-n-butyl phthalate in a laboratory-scale anaerobic/anoxic/oxic wastewater treatment process. Biores Technol 101(20):7767–7772. https://doi.org/10.1016/j.biortech.2010.05.028

    Article  CAS  Google Scholar 

  60. Huang Y, Yu Z, Liu L, Che Y, Zhang T (2022) Acesulfame anoxic biodegradation coupled to nitrate reduction by enriched consortia and isolated Shinella spp. Environ Sci Technol 56(18):13096–13106. https://doi.org/10.1021/acs.est.2c03656

    Article  CAS  Google Scholar 

  61. Hube S, Wu B (2021) Mitigation of emerging pollutants and pathogens in decentralized wastewater treatment processes: a review. Sci Total Environ 779:146545. https://doi.org/10.1016/j.scitotenv.2021.146545

    Article  CAS  Google Scholar 

  62. Jiang M, Wang L, Ji R (2010) Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment. Chemosphere 80(11):1399–1405. https://doi.org/10.1016/j.chemosphere.2010.05.048

    Article  CAS  Google Scholar 

  63. Kalkan Ç, Yapsakli K, Mertoglu B, Tufan D, Saatci A (2011) Evaluation of biological activated carbon (BAC) process in wastewater treatment secondary effluent for reclamation purposes. Desalination 265(1):266–273. https://doi.org/10.1016/j.desal.2010.07.060

    Article  CAS  Google Scholar 

  64. Karim AV, Shriwastav A (2023) Integrated sonophotocatalytic oxidation and SBR processes for the effective treatment of antibiotics with an emphasis on process optimization and microbial diversity. J Environ Chem Eng 11(2):109632. https://doi.org/10.1016/j.jece.2023.109632

    Article  CAS  Google Scholar 

  65. Kim SW, Liang Y, Lozano YM, Rillig MC (2021) Microplastics reduce the negative effects of litter-derived plant secondary metabolites on nematodes in soil. Front Environ Sci. https://doi.org/10.3389/fenvs.2021.790560

    Article  Google Scholar 

  66. Kim M, Guerra P, Shah A, Parsa M, Alaee M, Smyth SA (2014) Removal of pharmaceuticals and personal care products in a membrane bioreactor wastewater treatment plant. Water Sci Technol 69(11):2221–2229. https://doi.org/10.2166/wst.2014.145

  67. Klinčić D, Dvoršćak M, Jagić K, Mendaš G, Herceg Romanić S (2020) Levels and distribution of polybrominated diphenyl ethers in humans and environmental compartments: a comprehensive review of the last five years of research. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-07598-7

    Article  Google Scholar 

  68. Kong X-J, Li D, Cao L-Q, Zhang X-M, Zhao Y, Lv Y, Zhang J (2008) Evaluation of municipal sewage treatment systems for pollutant removal efficiency by measuring levels of micropollutants. Chemosphere 72(1):59–66. https://doi.org/10.1016/j.chemosphere.2008.02.005

  69. Ter Laak TL, Agbo SO, Barendregt A, Hermens JLM (2006) Freely dissolved concentrations of PAHs in soil pore water: measurements via solid-phase extraction and consequences for soil tests. Environ Sci Technol. https://doi.org/10.1021/es0514803

    Article  Google Scholar 

  70. Lecomte S, Habauzit D, Charlier TD, Pakdel F (2017) Emerging estrogenic pollutants in the aquatic environment and breast cancer. Genes. https://doi.org/10.3390/genes8090229

    Article  Google Scholar 

  71. Li Y, Xie S, Yao J (2023) Singlet oxygen generation for selective oxidation of emerging pollutants in a flow-by electrochemical system based on natural air diffusion cathode. Environ Sci Pollut Res 30(7):17854–17864. https://doi.org/10.1007/s11356-022-23364-3

    Article  CAS  Google Scholar 

  72. Li T, Xu Z-J, Zhou N-Y (2023) Aerobic degradation of the antidiabetic drug metformin by Aminobacter sp. strain NyZ550. Environ Sci Technol 57(3):1510–1519. https://doi.org/10.1021/acs.est.2c07669

  73. Lian J, Liu JX, Wei YS (2009) Fate of nonylphenol polyethoxylates and their metabolites in four Beijing wastewater treatment plants. Sci Total Environ 407(14):4261–4268. https://doi.org/10.1016/j.scitotenv.2009.03.022

    Article  CAS  Google Scholar 

  74. Lindberg RH, Wennberg P, Johansson MI, Tysklind M, Andersson BAV (2005) Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environ Sci Technol. https://doi.org/10.1021/es048143z

    Article  Google Scholar 

  75. Liu B, Zhang SG, Chang CC (2019) Emerging pollutants-part II: treatment. Water Environ Res 91(10):1390–1401. https://doi.org/10.1002/wer.1233

    Article  CAS  Google Scholar 

  76. Liu et al (2013) Occurrence and Removal Characteristics of Phthalate Esters from Typical Water Sources in Northeast China. J Anal Methods Chem 20131–8. https://doi.org/10.1155/2013/419349

  77. Liu X, Zhang G, Liu Y, Lu S, Qin P, Guo X et al (2019) Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China. Environ Pollut 246:163–173. https://doi.org/10.1016/j.envpol.2018.12.005

  78. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J et al (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065

  79. Mackintosh CE, Maldonado J, Hongwu J, Hoover N, Chong A, Ikonomou MG, Gobas FAPC (2004) Distribution of phthalate esters in a marine aquatic food web: comparison to polychlorinated biphenyls. Environ Sci Technol. https://doi.org/10.1021/es034745r

    Article  Google Scholar 

  80. Madukasi EI, Dai X, He C, Zhou J (2010) Potentials of phototrophic bacteria in treating pharmaceutical wastewater. Int J Environ Sci Technol 7(1):165–174. https://doi.org/10.1007/BF03326128

    Article  CAS  Google Scholar 

  81. Malaeb L, Ayoub GM (2011) Reverse osmosis technology for water treatment: state of the art review. Desalination 267(1):1–8. https://doi.org/10.1016/j.desal.2010.09.001

    Article  CAS  Google Scholar 

  82. Mares-Carbajal FJ, Espinosa-Arzate MC, Ramírez-Montoya LA, Pat-Espadas AM, Ramírez JE, Rangel-Mendez JR et al (2022) Biocatalyst developed with recovered iron-rich minerals enhances the biotransformation of SARS-CoV-2 antiviral drugs in anaerobic bioreactors. J Water Process Eng 50:103337. https://doi.org/10.1016/j.jwpe.2022.103337

  83. Marttinen SK, Ruissalo M, Rintala JA (2004) Removal of bis (2-ethylhexyl) phthalate from reject water in a nitrogen-removing sequencing batch reactor. J Environ Manage 73(2):103–109. https://doi.org/10.1016/j.jenvman.2004.05.011

    Article  Google Scholar 

  84. Maruya KA, Dodder NG, Sengupta A, Smith DJ, Lyons JM, Heil AT, Drewes JE (2016) Multimedia screening of contaminants of emerging concern (CECS) in coastal urban watersheds in southern California (USA). Environ Toxicol Chem. https://doi.org/10.1002/etc.3348

    Article  Google Scholar 

  85. Meng Y, Liu W, Fiedler H, Zhang J, Wei X, Liu X et al (2021) Fate and risk assessment of emerging contaminants in reclaimed water production processes. Front Environ Sci Eng 15(5):104. https://doi.org/10.1007/s11783-021-1392-8

  86. Mišík M, Knasmueller S, Ferk F, Cichna-Markl M, Grummt T, Schaar H, Kreuzinger N (2011) Impact of ozonation on the genotoxic activity of tertiary treated municipal wastewater. Water Res 45(12):3681–3691. https://doi.org/10.1016/j.watres.2011.04.015

    Article  CAS  Google Scholar 

  87. Morsi R, Bilal M, Iqbal HM, Ashraf SS (2020) Laccases and peroxidases: the smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci Total Environ 714:136572

    Article  CAS  Google Scholar 

  88. Ni S-Q, Cui Q, Zheng Z (2014) Interaction of polybrominated diphenyl ethers and aerobic granular sludge: biosorption and microbial degradation. Biomed Res Int 2014:274620. https://doi.org/10.1155/2014/274620

    Article  CAS  Google Scholar 

  89. Palma TL, Costa MC (2021) Anaerobic biodegradation of fluoxetine using a high-performance bacterial community. ANAEROBE 68.https://doi.org/10.1016/j.anaerobe.2021.102356

  90. Park C, Fang Y, Murthy SN, Novak JT (2010) Effects of floc aluminum on activated sludge characteristics and removal of 17-α-ethinylestradiol in wastewater systems. Water Res 44(5):1335–1340. https://doi.org/10.1016/j.watres.2009.11.002

    Article  CAS  Google Scholar 

  91. Petrovic M, Farré M, Eljarrat E, Diaz S, Barceló D (2013) Chapter 14—environmental analysis: emerging pollutants. In: Fanali S, Haddad PR, Poole CF, Schoenmakers P, Lloyd D (eds) Liquid chromatography. Elsevier, Amsterdam, pp 389–410

    Chapter  Google Scholar 

  92. Pham T-T, Proulx S (1997) PCBs and PAHs in the montreal urban community (Quebec, Canada) wastewater treatment plant and in the effluent plume in the St Lawrence River. Water Res 31(8):1887–1896. https://doi.org/10.1016/S0043-1354(97)00025-0

    Article  CAS  Google Scholar 

  93. Prasse C, Stalter D, Schulte-Oehlmann U, Oehlmann J, Ternes TA (2015) Spoilt for choice: a critical review on the chemical and biological assessment of current wastewater treatment technologies. Water Res. https://doi.org/10.1016/j.watres.2015.09.023

    Article  Google Scholar 

  94. Radjenovic J, Bagastyo A, Rozendal RA, Mu Y, Keller J, Rabaey K (2011) Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes. Water Res 45(4):1579–1586. https://doi.org/10.1016/j.watres.2010.11.035

    Article  CAS  Google Scholar 

  95. Ren S-Y, Ni H-G (2023) Biodeterioration of microplastics by bacteria isolated from mangrove sediment. Toxics 11(5). https://doi.org/10.3390/toxics11050432

  96. Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER (2017) Treatment technologies for emerging contaminants in water: a review. Chem Eng J 323:361–380. https://doi.org/10.1016/j.cej.2017.04.106

    Article  CAS  Google Scholar 

  97. Rogers HR (1996) Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. Sci Total Environ 185(1):3–26. https://doi.org/10.1016/0048-9697(96)05039-5

    Article  CAS  Google Scholar 

  98. Rutkowska M, Płotka-Wasylka J, Sajid M, Andruch V (2019) Liquid–phase microextraction: a review of reviews. Microchem J 149:103989

    Article  CAS  Google Scholar 

  99. Sangeetha Devi R, Ramya R, Kannan K, Robert Antony A, Rajesh Kannan V (2019) Investigation of biodegradation potentials of high density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Mar Pollut Bull 138:549–560. https://doi.org/10.1016/j.marpolbul.2018.12.001

    Article  CAS  Google Scholar 

  100. Saravanan A, Kumar PS, Duc PA, Rangasamy G (2023) Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: a sustainable approach. Chemosphere 313:137323. https://doi.org/10.1016/j.chemosphere.2022.137323

    Article  CAS  Google Scholar 

  101. Shukla R, Ahammad SZ (2023) Performance assessment of a modified trickling filter and conventional activated sludge process along with tertiary treatment in removing emerging pollutants from urban sewage. Sci Total Environ 858:159833. https://doi.org/10.1016/j.scitotenv.2022.159833

    Article  CAS  Google Scholar 

  102. Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN (2008) Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34(7):1033–1049. https://doi.org/10.1016/j.envint.2008.01.004

    Article  CAS  Google Scholar 

  103. Solís ME, Liu CC, Nam P, Niyogi DK, Bandeff JM, Huang Y-W (2007) Occurrence of Organic Chemicals in Two Rivers Inhabited by Ozark Hellbenders (Cryptobranchus alleganiensis bishopi). Arch Environ Contam Toxicol 53(3):426–434. https://doi.org/10.1007/s00244-006-0208-y

  104. Song X, Sun S, Gao Y, Zhang W, Zhou L et al (2022) Laboratory-scale study of a biodegradable microplastic polylactic acid stabilizing aerobic granular sludge system. Environ Pollut 306:119329. https://doi.org/10.1016/j.envpol.2022.119329

  105. Sophia AC, Lima EC (2018) Removal of emerging contaminants from the environment by adsorption. Ecotoxicol Environ Saf 150:1–17.https://doi.org/10.1016/j.ecoenv.2017.12.026

  106. Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35(4):667–749. https://doi.org/10.1016/S0045-6535(97)00195-1

    Article  CAS  Google Scholar 

  107. Suyamud B, Inthorn D, Panyapinyopol B, Thiravetyan P (2018) Biodegradation of Bisphenol A by a newly isolated Bacillus megaterium strain ISO-2 from a polycarbonate industrial wastewater. Water Air Soil Pollut 229(11):348. https://doi.org/10.1007/s11270-018-3983-y

    Article  CAS  Google Scholar 

  108. Tang Y, Liu Y, Chen Y, Zhang W, Zhao J, He S et al (2020) A review: research progress on microplastic pollutants in aquatic environments. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142572

  109. Teodosiu C, Gilca A-F, Barjoveanu G, Fiore S (2018) Emerging pollutants removal through advanced drinking water treatment: a review on processes and environmental performances assessment. J Clean Prod 197:1210–1221. https://doi.org/10.1016/j.jclepro.2018.06.247

    Article  CAS  Google Scholar 

  110. Terzic S, Matosic M, Ahel M, Mijatovic I (2005) Elimination of aromatic surfactants from municipal wastewaters: comparison of conventional activated sludge treatment and membrane biological reactor. Water Sci Technol 51(6–7):447–453. https://doi.org/10.2166/wst.2005.0667

  111. Tuan Tran H, Lin C, Bui X-T, Ky Nguyen M, Dan Thanh Cao N, Mukhtar H et al (2021) Phthalates in the environment: characteristics, fate and transport, and advanced wastewater treatment technologies. Bioresour Technol. https://doi.org/10.1016/j.biortech.2021.126249

  112. Valladares Linares R, Yangali-Quintanilla V, Li Z, Amy G (2011) Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Res 45(20):6737–6744. https://doi.org/10.1016/j.watres.2011.10.037

    Article  CAS  Google Scholar 

  113. Vargas-Ordóñez A, Aguilar-Romero I, Villaverde J, Madrid F, Morillo E (2023) Isolation of novel bacterial strains pseudomonas extremaustralis CSW01 and stutzerimonas stutzeri CSW02 from sewage sludge for paracetamol biodegradation. Microorganisms 11(1). https://doi.org/10.3390/microorganisms11010196

  114. Vela N, Fenoll J, Garrido I, Pérez-Lucas G, Flores P, Hellín P, Navarro S (2019) Reclamation of agro-wastewater polluted with pesticide residues using sunlight activated persulfate for agricultural reuse. Sci Total Environ 660:923–930. https://doi.org/10.1016/j.scitotenv.2019.01.060

    Article  CAS  Google Scholar 

  115. Vethaak AD, Lahr J, S. Marca, Schrap Angélique C., Belfroid Gerard BJ., Rijs Anton, Gerritsen Jacob, de Boer Astrid S., Bulder Guy CM., Grinwis Raoul V., Kuiper Juliette, Legler Tinka AJ., Murk Willie, Peijnenburg Henk JM., Verhaar Pim, de Voogt (2005) An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere 59(4):511–524. https://doi.org/10.1016/j.chemosphere.2004.12.053

  116. Vieno NM, Tuhkanen T, Kronberg L (2005) Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water. Environ Sci Technol 39(21):8220–8226. https://doi.org/10.1021/es051124k

    Article  CAS  Google Scholar 

  117. Wang H, Liang H, Gao D (2017) Occurrence and distribution of phthalate esters (PAEs) in wetland sediments. J For Res. https://doi.org/10.1007/s11676-017-0371-1

    Article  Google Scholar 

  118. Wang C, Wang J, Gao W, Ning X, Xu S, Wang X et al (2023) The fate of phthalate acid esters in wastewater treatment plants and their impact on receiving waters. Sci Total Environ 873:162201. https://doi.org/10.1016/j.scitotenv.2023.162201

  119. Wang F, Xia X, Sha Y (2007) Distribution of phthalic acid esters in Wuhan section of the Yangtze River, China. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2007.10.028

  120. Wang WH, Zhang WF, Liang H, Gao DW (2019) Occurrence and fate of typical antibiotics in wastewater treatment plants in Harbin, North-east China. Front Environ Sci Eng 13(3). https://doi.org/10.1007/s11783-019-1118-3

  121. Wang F, Xia X, Sha Y (2008) Distribution of Phthalic Acid Esters in Wuhan section of the Yangtze River China. J Hazard Mater 154(1–3): 317-324. https://doi.org/10.1016/j.jhazmat.2007.10.028

  122. Water Air and Soil Pollution 140(1/4) 85–98. https://doi.org/10.1023/A:1020134707450

  123. Wen Z, Huang X, Gao D, Liu G, Fang C, Shang Y et al (2017) Phthalate esters in surface water of Songhua River watershed associated with land use types, Northeast China. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-1119-3

  124. Wolfe NL, Steen WC, Burns LA (1980) Phthalate ester hydrolysis: linear free energy relationships. Chemosphere 9(7):403–408. https://doi.org/10.1016/0045-6535(80)90023-5

    Article  CAS  Google Scholar 

  125. Wu B, Zhang X, Zhang X, Yasun A, Zhang Y, Zhao D et al (2009) Semi-volatile organic compounds and trace elements in the Yangtze River source of drinking water. Ecotoxicology. https://doi.org/10.1007/s10646-009-0331-4

  126. Wu J, Ma TJ, Zhou ZF, Yu N, He ZQ, Li BS et al (2019) Occurrence and fate of phthalate esters in wastewater treatment plants in Qingdao, China. Hum Ecol Risk Assess 25(6):1547–1563. https://doi.org/10.1080/10807039.2018.1471341

  127. Wu B, Zhang X, Zhang X, Yasun A, Zhang Y, Zhao D, Ford T, Cheng S (2009) Semi-volatile organic compounds and trace elements in the Yangtze River source of drinking water. Ecotoxicol 18(6):707–714. https://doi.org/10.1007/s10646-009-0331-4

  128. Yan Q, Gao X, Chen Y-P, Peng X-Y, Zhang Y-X, Gan X-M et al (2014) Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area. Sci Total Environ 470–471:618–630. https://doi.org/10.1016/j.scitotenv.2013.09.032

  129. Yang C-W, Liu C, Chang B-V (2020) Biodegradation of amoxicillin, tetracyclines and sulfonamides in wastewater sludge. Water 12(8):2147

    Article  CAS  Google Scholar 

  130. Yang Y, Wang P, Liu Y (2010) Species distribution of ferric hydrolysates in microwave enhanced Fenton-like process and possible mechanism. J Hazard Mater 178(1):293–297. https://doi.org/10.1016/j.jhazmat.2010.01.076

    Article  CAS  Google Scholar 

  131. Ye S, Andrady AL (1991) Fouling of floating plastic debris under Biscayne Bay exposure conditions. Mar Pollut Bull 22(12):608–613. https://doi.org/10.1016/0025-326X(91)90249-R

    Article  Google Scholar 

  132. Yin X, Zeb R, Wei H, Cai L (2020) Acute exposure of di(2-ethylhexyl) phthalate (DEHP) induces immune signal regulation and ferroptosis in oryzias melastigma. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.129053

    Article  Google Scholar 

  133. Zhang C, Wang Y (2009) Removal of dissolved organic matter and phthalic acid esters from landfill leachate through a complexation–flocculation process. Waste Manage 29(1):110–116. https://doi.org/10.1016/j.wasman.2008.02.023

    Article  Google Scholar 

  134. Zhang Q-Q, Ying G-G, Pan C-G, Liu Y-S, Zhao J-L (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol. https://doi.org/10.1021/acs.est.5b00729

    Article  Google Scholar 

  135. Zhang J, Li G, Yuan X, Li P, Yu Y, Yang W, Zhao S (2023) Reduction of ultrafiltration membrane fouling by the pretreatment removal of emerging pollutants: a review. Membranes 13(1):77. Retrieved from https://www.mdpi.com/2077-0375/13/1/77

  136. Zhang R, Wang W, Shi X,Yu X, Li M, Xiao L, Cui Y (2011) Health risk of semi-volatile organic pollutants in Wujin river inflow into Taihu Lake. Ecotoxicol 20(5):1083–1089. https://doi.org/10.1007/s10646-011-0682-5

  137. Zhou Q, Chen L, Wang Z, Wang J, Ni S, Qiu J et al (2017) Fast atrazine degradation by the mixed cultures enriched from activated sludge and analysis of their microbial community succession. Environ Sci Pollut Res 24(28):22152–22157. https://doi.org/10.1007/s11356-017-9052-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao Dawen .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dawen, G., Nabi, M. (2024). Fate and Transport of Emerging Pollutants in Aquatic Environment. In: Novel Approaches Towards Wastewater Treatment. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-55189-5_5

Download citation

Publish with us

Policies and ethics