Skip to main content

Pathological Diagnosis of Bone and Joint Infections

  • Chapter
  • First Online:
Histopathology of Bone and Joint Infections

Abstract

Bone and joint infection (BJI) is a major global health burden with significant management challenge. BJI can be divided into suppurative (mainly bacterial infection), granulomatous (e.g., tuberculosis and fungal infection), and parasitic infection. Although isolating the pathogen from tissues is the gold standard for the confirmation of BJI, pathological examination performs a major role in the diagnosis of BJI. An invasive sampling is often required for several reasons including the distinction between infectious from non-infectious diseases. The inflammatory response to pathogenic microorganisms is sufficiently consistent to allow pathologists to diagnose an infectious process and to suggest the causative agent. For example, epithelioid cell granulomas associated with caseous necrosis are highly suggestive of tuberculosis, and the diagnosis can be retained with confidence even if bacteriological investigations are lacking or negative. Although necrotizing granuloma is highly suggestive of tuberculosis, it must be kept in mind that fungal infections and bacteria such as Brucella spp. may also cause necrotizing granulomas. The identification of the infectious agent such fungi or parasite allows establishing the etiological diagnosis of BJI.

Ancillary techniques: special stains, immunochemistry, and molecular assays may help identify infectious agent in tissue sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFB:

Acid-fast bacilli

BJI:

Bone and joint infection

FFPET:

Formalin fixed paraffin embedded tissue

FNA:

Fine needle aspiration

FT:

Fresh tissue

GMS:

Grocott–Gömöri’s methenamine silver stain,

H&E:

Hematoxylin and eosin

ISH:

In situ hybridization

MGG:

May-Grunwald and Giemsa

MTB:

Mycobacterium tuberculosis

PAS:

Periodic acid Schiff

PCR:

Polymerase chain reaction

TB:

Tuberculosis

ZN:

Ziehl-Neelsen

References

  1. Khurana JS, Arguello-Guerra V. Grossing of bone and soft tissue (common specimens and procedures). In: Khurana JS, editor. Bone pathology. Totowa, NJ: Humana Press; 2009. p. 125–8.

    Chapter  Google Scholar 

  2. Yao L, Bu C, Zhang J, Zhang DJFIM. The value of histopathology combined with CapitalBio Mycobacterium real-time polymerase chain reaction test for diagnosing spinal tuberculosis. Front Med. 2023;10:1173368.

    Article  Google Scholar 

  3. Romdhane E, Rammeh S, Riahi H, Chebbi Y, Mouna CB, Achour W, et al. The value of histology in the diagnosis of tuberculous spondylodiscitis. J Clin Rheumatol Pract Rep Rheum Musculoskelet Dis. 2020;26(2):63–6.

    Google Scholar 

  4. Yu Y, Kong Y, Ye J, Wang A. Performance of conventional histopathology and GeneXpert MTB/RIF in the diagnosis of spinal tuberculosis from bone specimens: a prospective clinical study. Clin Biochem. 2020;85:33–7.

    Article  PubMed  Google Scholar 

  5. Sybenga AB, Jupiter DC, Speights VO, Rao A. Diagnosing osteomyelitis: a histology guide for pathologists. J Foot Ankle Surg. 2020;59(1):75–85.

    Article  PubMed  Google Scholar 

  6. Iwata E, Scarborough M, Bowden G, McNally M, Tanaka Y, Athanasou NA. The role of histology in the diagnosis of spondylodiscitis: correlation with clinical and microbiological findings. The Bone Joint J. 2019;101-b(3):246–52.

    Article  CAS  PubMed  Google Scholar 

  7. Peh W. CT-guided percutaneous biopsy of spinal lesions. Biomed Imaging Interv J. 2006;2(3):e25.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ladeb F, Ben Aissa H, Tiouiri H, Bouzouaya N, Cheour I, Kchir MM, et al. Clinical pratice guidelines for the diagnosis and treatment of native vertebral osteomyelitis. Tunis Med. 2019;97(1):14–92.

    PubMed  Google Scholar 

  9. (SPILF) LSdPIdLF. Clinical practice recommendations. Osteoarticular infections on materials (prosthesis, implant, osteosynthesis). Med Mal Infect. 2009;39(11):815–63.

    Article  Google Scholar 

  10. Berbari EF, Kanj SS, Kowalski TJ, Darouiche RO, Widmer AF, Schmitt SK, et al. 2015 Infectious Diseases Society of America (IDSA) clinical practice guidelines for the diagnosis and treatment of native vertebral osteomyelitis in adults. Clin Infect Dis. 2015;61(6):e26–46.

    Article  PubMed  Google Scholar 

  11. Panteli M, Giannoudis PV. Chronic osteomyelitis: what the surgeon needs to know. EFORT Open Rev. 2016;1(5):128–35.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Colston J, Atkins B. Bone and joint infection. Clin Med (Lond). 2018;18(2):150–4.

    Article  PubMed  Google Scholar 

  13. Rl K, Deshpande V, Iafrate AJ. 2- general principles in the diagnosis of infection. In: Kradin RL, editor. Diagnostic pathology of infectious disease. 2nd ed. Amsterdam: Elsevier; 2018. p. 3–15.

    Google Scholar 

  14. Rammeh S, Romdhane E, Riahi H, Chebbi Y, Bouaziz MC, Achour W, et al. Granulomatous spondylodiscitis: a case series with focus on histopathological features. J Spinal Cord Med. 2021;44(2):282–7.

    Article  PubMed  Google Scholar 

  15. Reller LB, Weinstein MP, Procop GW, Wilson MJCID. Infectious disease pathology. Modern Pathol. 2001;32(11):1589–601.

    Google Scholar 

  16. Rammeh S, Romdhane E, Riahi H, Ksentini M, Chelli Bouaziz M, Ayadi R, et al. Brucellar spondylodiscitis: a case series with focus on histopathological features. J Clin Neurosci. 2020;78:360–4.

    Article  CAS  PubMed  Google Scholar 

  17. Procop GW, Pritt B. Pathology of infectious diseases E-book: a volume in the series: foundations in diagnostic pathology. Amsterdam: Elsevier; 2014.

    Google Scholar 

  18. Husseini JS, Habibollahi S, Nelson SB, Rosenthal DI, Chang CY. Best practices: CT-guided percutaneous sampling of vertebral discitis-osteomyelitis and technical factors maximizing biopsy yield. AJR Am J Roentgenol. 2021;217(5):1057–68.

    Article  PubMed  Google Scholar 

  19. de Lucas EM, González Mandly A, Gutiérrez A, Pellón R, Martín-Cuesta L, Izquierdo J, et al. CT-guided fine-needle aspiration in vertebral osteomyelitis: true usefulness of a common practice. Clin Rheumatol. 2009;28(3):315–20.

    Article  PubMed  Google Scholar 

  20. Masood S, Mallinson PI, Sheikh A, Ouellette H, Munk PL. Percutaneous bone biopsy. Tech Vasc Interv Radiol. 2022;25(1):100800.

    Article  PubMed  Google Scholar 

  21. Jorda M, Rey L, Hanly A, Ganjei-Azar P. Fine-needle aspiration cytology of bone: accuracy and pitfalls of cytodiagnosis. Cancer. 2000;90(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  22. Phadke DM, Lucas DR, Madan S. Fine-needle aspiration biopsy of vertebral and intervertebral disc lesions: specimen adequacy, diagnostic utility, and pitfalls. Arch Pathol Lab Med. 2001;125(11):1463–8.

    Article  CAS  PubMed  Google Scholar 

  23. Powers CN. Diagnosis of infectious diseases: a cytopathologist's perspective. Clin Microbiol Rev. 1998;11(2):341–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Torous VF, Cuda JM, Manucha V, Randolph ML, Shi Q, VandenBussche CJ. Cell blocks in cytology: review of preparation methods, advantages, and limitations. J Am Soc Cytopathol. 2023;12(2):77–88.

    Article  PubMed  Google Scholar 

  25. Van Deun A, Aung KJ, Hamid Salim A, Gumusboga M, Nandi P, Hossain MA. Methylene blue is a good background stain for tuberculosis light-emitting diode fluorescence microscopy. Int J Tuberc Lung Dis. 2010;14(12):1571–5.

    PubMed  Google Scholar 

  26. Karimi S, Shamaei M, Pourabdollah M, Sadr M, Karbasi M, Kiani A, et al. Histopathological findings in immunohistological staining of the granulomatous tissue reaction associated with tuberculosis. Tuberc Res Treat. 2014;2014:858396.

    PubMed  PubMed Central  Google Scholar 

  27. Handa U, Garg S, Mohan H, Garg SK. Role of fine-needle aspiration cytology in tuberculosis of bone. Diagn Cytopathol. 2010;38(1):1–4.

    Article  PubMed  Google Scholar 

  28. Guarner J, Brandt ME. Histopathologic diagnosis of fungal infections in the 21st century. Clin Microbiol Rev. 2011;24(2):247–80.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nemenqani D, Yaqoob N, Khoja H. Breast brucellosis in Taif, Saudi Arabia: cluster of six cases with emphasis on FNA evaluation. J Infect Dev Ctries. 2009;3(4):255–9.

    Article  PubMed  Google Scholar 

  30. Romdhane E, Rammeh S, Riahi H, Chebbi Y, Mouna CB, Achour W, et al. The value of histology in the diagnosis of tuberculous spondylodiscitis. J Clin Rheumatol Pract Rep Rheum Musculoskelet Dis. 2018;26:63.

    Google Scholar 

  31. Althoff CE, Hermann KG, Wiechen K, Lembcke A, Enzweiler CN, Hamm B, et al. Formalin-fixed blood clots—additional histological findings on computed tomography-guided fine-needle aspiration biopsies in comparison with core biopsies. J Comput Assist Tomogr. 2006;30(3):386–90.

    Article  PubMed  Google Scholar 

  32. Mangham DC, Boros K, Freemont AJ, Mazhari M. Tissue pathways for bone and soft tissue pathology may 2023. London: The Royal College of Pathologists; 2023.

    Google Scholar 

  33. Romdhane E, Rammeh S, Bouaziz CM, Riahi H, Ben MR, Ksentini M, et al. Performances of single tube nested polymerase chain reaction and GeneXpert ultra on formalin fixed paraffin embedded tissues in the diagnosis of tuberculous spondylodiscitis. Clin Rheumatol. 2021;40(10):4317–23.

    Article  PubMed  Google Scholar 

  34. Schmitt BH. An introduction to infectious disease pathology. In: Schmitt BH, editor. Atlas of infectious disease pathology. Cham: Springer; 2017. p. 1–5.

    Chapter  Google Scholar 

  35. Bi S, Hu FS, Yu HY, Xu KJ, Zheng BW, Ji ZK, et al. Nontuberculous mycobacterial osteomyelitis. Infecti Dis (London, England). 2015;47(10):673–85.

    Google Scholar 

  36. Mohanty M, Mishra B, Jain M, Karaniveed PL. Diagnostic role of Xpert-MTB RIF assay in osteoarticular tuberculosis: a retrospective study. World J Orthop. 2022;13(3):289–96.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rammeh S, Romdhane E. Pathology of tuberculosis. In: Ladeb MF, Peh WCG, editors. Imaging of tuberculosis. Cham: Springer International Publishing; 2022. p. 29–58.

    Chapter  Google Scholar 

  38. Shalin SC, Ferringer T, Cassarino DS. PAS and GMS utility in dermatopathology: review of the current medical literature. J Cutan Pathol. 2020;47(11):1096–102.

    Article  PubMed  Google Scholar 

  39. Misdraji J. Book review: histologic preparations: common problems and their solutions, vol. 38. Northfield, IL: Brown CAP Press; 2010. p. 308.

    Google Scholar 

  40. Bui MM, Dodd LG. Atlas of soft tissue and bone pathology. New York: Demos Medical Publishing; 2014.

    Google Scholar 

  41. van Deventer BS, du Toit-Prinsloo L, van Niekerk C. Practical tips to using formalin-fixed paraffin-embedded tissue archives for molecular diagnostics in a south African setting. Afr J Lab Med. 2022;11(1):1587.

    PubMed  PubMed Central  Google Scholar 

  42. Muñoz-Cadavid C, Rudd S, Zaki SR, Patel M, Moser SA, Brandt ME, et al. Improving molecular detection of fungal DNA in formalin-fixed paraffin-embedded tissues: comparison of five tissue DNA extraction methods using panfungal PCR. J Clin Microbiol. 2010;48(6):2147–53.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sterchi DL. Molecular pathology—in situ hybridization. In: Theory and practice of histological techniques. Amsterdam: Elsevier; 2008. p. 537–58. https://doi.org/10.1016/B978-0-443-10279-0.50033-6. Epub 2020 Jun 22.

    Chapter  Google Scholar 

  44. Lefmann M, Schweickert B, Buchholz P, Göbel UB, Ulrichs T, Seiler P, et al. Evaluation of peptide nucleic acid-fluorescence in situ hybridization for identification of clinically relevant mycobacteria in clinical specimens and tissue sections. J Clin Microbiol. 2006;44(10):3760–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Petti C, Bosshard P, Brandt M, Clarridge J, Feldblyum T, Foxall P, et al. Interpretive criteria for identification of bacteria and fungi by DNA target sequencing; approved guideline, vol. 28. Wayne, PA: Clinical and Laboratory Standards Institute; 2008. p. 19087–1898.

    Google Scholar 

  46. Salehi E, Hedayati MT, Zoll J, Rafati H, Ghasemi M, Doroudinia A, et al. Discrimination of aspergillosis, Mucormycosis, Fusariosis, and Scedosporiosis in formalin-fixed paraffin-embedded tissue specimens by use of multiple real-time quantitative PCR assays. J Clin Microbiol. 2016;54(11):2798–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lemos LB, Guo M, Baliga M. Blastomycosis: organ involvement and etiologic diagnosis. A review of 123 patients from Mississippi. Ann Diagn Pathol. 2000;4(6):391–406.

    Article  CAS  PubMed  Google Scholar 

  48. Patel AJ, Gattuso P, Reddy VB. Diagnosis of blastomycosis in surgical pathology and cytopathology: correlation with microbiologic culture. Am J Surg Pathol. 2010;34(2):256–61.

    Article  PubMed  Google Scholar 

  49. Çiftci A, İça T, Savaşan S, Sareyyüpoğlu B, Akan M, Diker KS. Evaluation of PCR methods for detection of Brucella strains from culture and tissues. Trop Anim Health Prod. 2017;49(4):755–63.

    Article  PubMed  Google Scholar 

  50. Li M, Zhou X, Li J, Sun L, Chen X, Wang P. Real-time PCR assays for diagnosing brucellar spondylitis using formalin-fixed paraffin-embedded tissues. Medicine. 2018;97(9):e0062.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Can H, İnceboz T, Caner A, Atalay Şahar E, Karakavuk M, Döşkaya M, et al. Detection of Echinococcus granulosus and Echinococcus multilocularis in cyst samples using a novel single tube multiplex real-time polymerase chain reaction. Mikrobiyol Bul. 2016;50(2):266–77.

    Article  CAS  PubMed  Google Scholar 

  52. Casulli A, Massolo A, Saarma U, Umhang G, Santolamazza F, Santoro A. Species and genotypes belonging to Echinococcus granulosus sensu lato complex causing human cystic echinococcosis in Europe (2000-2021): a systematic review. Parasit Vectors. 2022;15(1):109.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dinkel A, Kern S, Brinker A, Oehme R, Vaniscotte A, Giraudoux P, et al. A real-time multiplex-nested PCR system for coprological diagnosis of Echinococcus multilocularis and host species. Parasitol Res. 2011;109(2):493–8.

    Article  PubMed  Google Scholar 

  54. Yamasaki H, Allan JC, Sato MO, Nakao M, Sako Y, Nakaya K, et al. DNA differential diagnosis of taeniasis and cysticercosis by multiplex PCR. J Clin Microbiol. 2004;42(2):548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumaya Rammeh Rommani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rammeh Rommani, S., Romdhane, E., Zakhama, A., Bellalah, A. (2024). Pathological Diagnosis of Bone and Joint Infections. In: Rammeh Rommani, S., Ladeb, M.F. (eds) Histopathology of Bone and Joint Infections. Springer, Cham. https://doi.org/10.1007/978-3-031-54888-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54888-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54887-1

  • Online ISBN: 978-3-031-54888-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics