Skip to main content

MSAA-Net: Multi-Scale Attention Assembler Network Based on Multiple Instance Learning for Pathological Image Analysis

  • Conference paper
  • First Online:
Pattern Recognition Applications and Methods (ICPRAM 2023)

Abstract

In this paper, we present a multi-scale attention assembler network (MSAA-Net) tailored for multi-scale pathological image analysis. The proposed approach identifies essential features by examining pathological images across different resolutions (scales) and adaptively determines which scales and spatial regions predominantly influence the classification. Specifically, our approach incorporates a two-stage feature integration strategy. Initially, the network allocates the attention scores to relevant local regions of each scale and then refines the attention scores for each scale as a whole. To facilitate the training of the MSAA-Net, we employ the technique of multiple instance learning (MIL), which enables us to train the classification model using the pathologist’s daily diagnoses of whole slide images without requiring detailed annotation (i.e., pixel-level labels), thereby minimizing annotation effort. We evaluate the effectiveness of the proposed method by conducting classification experiments using two distinct sets of pathological image data. We conduct a comparative analysis of the attention maps generated by these methods. The results demonstrate that the proposed method outperforms state-of-the-art multiscale methods, confirming the effectiveness of MSAA-Net in classifying multi-scale pathological images.

T. Yoshida, K. Uehara—These authors contributed equally to this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albertina, B., et al.: The cancer genome atlas lung adenocarcinoma collection [TCGA-LUAD]. The Cancer Imaging Archive (2016). https://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5

  2. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. Adv. Neural Inf. Process. Syst. 15, 577–584. MIT Press (2002)

    Google Scholar 

  3. Araújo, T., et al.: Classification of breast cancer histology images using convolutional neural networks. PLoS ONE 12(6), e0177544 (2017)

    Google Scholar 

  4. Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019)

    Google Scholar 

  5. Chen, R.J., et al.: Scaling vision transformers to gigapixel images via hierarchical self-supervised learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 16144–16155. IEEE (2022)

    Google Scholar 

  6. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1), 31–71 (1997)

    Article  Google Scholar 

  7. Feng, J., Zhou, Z.H.: Deep MIML network. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 1884–1890. MIT Press (2017)

    Google Scholar 

  8. Hashimoto, N., et al.: Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3852–3861. IEEE (2020)

    Google Scholar 

  9. Herrera, F., et al.: Multi-instance Regression. In: Multiple Instance Learning, pp. 127–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47759-6_6

  10. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: Proceedings of the 35th International Conference on Machine Learning, vol. 80, pp. 2127–2136. PMLR (2018)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  12. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 14318–14328. IEEE (2021)

    Google Scholar 

  13. Li, J., et al.: A multi-resolution model for histopathology image classification and localization with multiple instance learning. Comput. Biol. Med. 131, 104253 (2021)

    Google Scholar 

  14. Liu, Y., et al.: Detecting cancer metastases on gigapixel pathology images. arXiv:1703.02442 (2017)

  15. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. Adv. Neural Inf. Process. Syst. 10, 570–576. MIT Press (1997)

    Google Scholar 

  16. Pinheiro, P.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1713–1721. IEEE (2015)

    Google Scholar 

  17. Shao, Z., et al.: TransMIL: transformer based correlated multiple instance learning for whole slide image classification. Adv. Neural Inf. Process. Syst. 34, 2136–2147. MIT Press (2021)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations (2015)

    Google Scholar 

  19. Tellez, D., Litjens, G., van der Laak, J., Ciompi, F.: Neural image compression for gigapixel histopathology image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 567–578 (2021)

    Article  Google Scholar 

  20. Yoshida, T., Uehara, K., Sakanashi, H., Nosato, H., Murakawa, M.: Multi-scale feature aggregation based multiple instance learning for pathological image classification. In: Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods - ICPRAM, pp. 619–628. Scitepress (2023)

    Google Scholar 

  21. Zhouhan, L., et al.: A structured self-attentive sentence embedding. In: 5th International Conference on Learning Representations, ICLR 2017, pp. 24–26 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Junya Fukuoka and Dr. Wataru Uegami from Nagasaki University Graduate School of Biomedical Sciences for providing the dataset and medical comments. Computational resource of AI Bridging Cloud Infrastructure (ABCI) provided by the National Institute of Advanced Industrial Science and Technology (AIST) was used. This study is based on results obtained from the project JPNP20006, commissioned by the New Energy and Industrial Technology Development Organization (NEDO). This study was approved by the Ethics Committee (Institutional Review Board) of Nagasaki University Hospital (No. 19081929-2) and the National Institute of Advanced Industrial Science and Technology (No. Hi2019-312) and complied with all the relevant ethical regulations. The results here are in whole or part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Uehara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoshida, T., Uehara, K., Sakanashi, H., Nosato, H., Murakawa, M. (2024). MSAA-Net: Multi-Scale Attention Assembler Network Based on Multiple Instance Learning for Pathological Image Analysis. In: De Marsico, M., Di Baja, G.S., Fred, A. (eds) Pattern Recognition Applications and Methods. ICPRAM 2023. Lecture Notes in Computer Science, vol 14547. Springer, Cham. https://doi.org/10.1007/978-3-031-54726-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54726-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54725-6

  • Online ISBN: 978-3-031-54726-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics