Skip to main content

Complexities of Cortex and the Need for Detailed Models

  • Chapter
  • First Online:
Brain Leitmotifs
  • 107 Accesses

Abstract

In the next chapters, we shall consider mammalian cortical structures, including the neocortex, piriform (olfactory) cortex, entorhinal cortex, and hippocampus: their neurons, synapses and gap junctions, and some collective network phenomena that involve hundreds to thousands of cells. The latter phenomena include oscillations, synchronized firings, and epileptic-like activities: phenomena which are truly collective but where insight is possible even if one does not account exactly for what every neuron is doing at every time. We shall also consider cell assemblies, where the identity of the neurons participating in an assembly is presumed to matter but where a network model does not draw one-to-one correspondences between model neurons and particular experimentally recorded neurons. The model seeks to predict properties of the assemblies, not their exact contents. In a word, our approach has some resemblance to the study of CPGs – we take into account electrophysiological and synaptic details – yet is also different, as there are too many neurons now, the neurons are not identifiable, and we seek to explain more generic properties of the system rather than draw exact model-experiment neuron-neuron correlations. But not too generic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian ED (1942) Olfactory reactions in the brain of the hedgehog. J Physiol 100:459–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adrian ED, Matthews BH (1934) The Berger rhythm: potential changes from the occipital lobes in man. Brain 57:355–385

    Article  Google Scholar 

  • Akam T, Kullmann DM (2010) Oscillations and filtering networks support flexible routing of information. Neuron 67:308–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akam T, Kullmann DM (2014) Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nat Rev Neurosci 15:111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amzica F, Steriade M (1998) Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107:69–83

    Article  CAS  PubMed  Google Scholar 

  • Antal K, Emri Z, Tóth TI, Crunelli V (1996) Model of a thalamocortical neurone with dendritic voltage-gated ion channels. Neuroreport 7:2655–2658

    Article  CAS  PubMed  Google Scholar 

  • Aroniadou VA, Keller A (1993) The patterns and synaptic properties of horizontal intracortical connections in the rat motor cortex. J Neurophysiol 70:1553–1569

    Article  CAS  PubMed  Google Scholar 

  • Askew CE, Lopez AJ, Wood MA, Metherate R (2019) Nicotine excites VIP interneurons to disinhibit pyramidal neurons in auditory cortex. Synapse 73:e22116

    Article  PubMed  PubMed Central  Google Scholar 

  • Astori S, Wimmer RD, Lüthi A (2013) Manipulating sleep spindles–expanding views on sleep, memory, and disease. Trends Neurosci 36:738–748

    Article  CAS  PubMed  Google Scholar 

  • Ayala GF, Dichter M, Gumnit RJ, Matsumoto H, Spencer WA (1973) Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms. Brain Res 52:1–17

    Article  CAS  PubMed  Google Scholar 

  • Bading H (2013) Nuclear calcium signalling in the regulation of brain function. Nat Rev Neurosci 14:593–608

    Article  CAS  PubMed  Google Scholar 

  • Bähner F, Weiss EK, Birke G, Maier N, Schmitz D, Rudolph U, Frotscher M, Traub RD, Both M, Draguhn A (2011) Cellular correlate of assembly formation in oscillating hippocampal networks in vitro. Proc Natl Acad Sci USA 108:E607–E616

    Article  PubMed  PubMed Central  Google Scholar 

  • Bal T, McCormick DA (1993) Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. J Physiol 468:669–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blethyn KL, Hughes SW, Crunelli V (2008) Evidence for electrical synapses between neurons of the nucleus reticularis thalami in the adult brain in vitro. Thalamus Relat Syst 4:13–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown BM, Nguyen HM, Wulff H (2019) Recent advances in our understanding of the structure and function of more unusual cation channels. F1000Res 8:F1000 Faculty Rev-123

    Article  PubMed  PubMed Central  Google Scholar 

  • Bucher D, Thirumalai V, Marder E (2003) Axonal dopamine receptors activate peripheral spike initiation in a stomatogastric motor neuron. J Neurosci 23:6866–6875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buhl EH, Tamás G, Szilágyi T, Stricker C, Paulsen O, Somogyi P (1997) Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. J Physiol 500:689–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsáki G (1986) Hippocampal sharp waves: their origin and significance. Brain Res 398:242–252

    Article  PubMed  Google Scholar 

  • Buzsáki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340

    Article  PubMed  Google Scholar 

  • Buzsáki G (2005) Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15:827–840

    Article  PubMed  Google Scholar 

  • Buzsáki G (2015) Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25:1073–1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  PubMed  Google Scholar 

  • Buzsáki G, Horváth Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in the hippocampus. Science 256:1025–1027

    Article  PubMed  Google Scholar 

  • Cangiano L, Gargini C, Della Santina L, Demontis GC, Cervetto L (2007) High-pass filtering of input signals by the Ih current in a non-spiking neuron, the retinal rod bipolar cell. PLoS One 2:e1327

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai U-H, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carracedo LM, Kjeldsen H, Cunnington L, Jenkins A, Schofield I, Cunningham MO, Traub RD, Whittington MA (2013) A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms. J Neurosci 33:10750–10761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press

    Google Scholar 

  • Chorev E, Brecht M (2012) In vivo dual intra- and extracellular recordings suggest bidirectional coupling between CA1 pyramidal neurons. J Neurophysiol 108:1584–1593

    Article  PubMed  Google Scholar 

  • Connors BW (2017) Synchrony and so much more: diverse roles for electrical synapses in neural circuits. Dev Neurobiol 77:610–624

    Article  PubMed  PubMed Central  Google Scholar 

  • Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104

    Article  CAS  PubMed  Google Scholar 

  • Connors BW, Gutnick MJ, Prince DA (1982) Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48:1302–1320

    Article  CAS  PubMed  Google Scholar 

  • Contreras D, Steriade M (1996) Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. J Physiol 490:159–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs JS, Curtis DR, Eccles JC (1957) The generation of impulses in motoneurones. J Physiol 139:232–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox CL, Huguenard JR, Prince DA (1997) Nucleus reticularis neurons mediate diverse inhibitory effects in thalamus. Proc Natl Acad Sci USA 94:8854–8859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crome L, Sylvester PE (1958) Hydranencephaly (hydrencephaly). Arch Dis Child 33:235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crunelli V, Lightowler S, Pollard CE (1989) A T-type Ca2+ current underlies low-threshold Ca2+ potentials in cells of the cat and rat lateral geniculate nucleus. J Physiol 413:543–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham MO, Whittington MA, Bibbig A, Roopun A, LeBeau FEN, Vogt A, Monyer H, Buhl EH, Traub RD (2004a) A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro. Proc Natl Acad Sci USA 101:7152–7157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham MO, Halliday DM, Davies CH, Traub RD, Buhl EH, Whittington MA (2004b) Coexistence of gamma and high-frequency oscillations in the medial entorhinal cortex in vitro. J Physiol 559:347–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destexhe A, McCormick DA, Sejnowski TJ (1993) A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophys J 65:2473–2477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J Neurophysiol 72:803–818

    Article  CAS  PubMed  Google Scholar 

  • Deuchars J, Thomson AM (1996) CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74:1009–1018

    CAS  PubMed  Google Scholar 

  • Dodge FA Jr, Cooley JW (1973) Action potential of the motoneuron. IBM J Res Dev 17:219–229

    Article  Google Scholar 

  • Dossi RC, Nuñez A, Steriade M (1992) Electrophysiology of a slow (0.5-4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. J Physiol 447:215–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draguhn A, Traub RD, Schmitz D, Jefferys JGR (1998) Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394:189–192

    Article  CAS  PubMed  Google Scholar 

  • Dugladze T, Schmitz D, Whittington MA, Vida I, Gloveli T (2017) Segregation of axonal and somatic activity during fast network oscillations. Science 336:1458–1461

    Article  Google Scholar 

  • Feldmeyer D, Lübke J, Silver RA, Sakmann B (2002) Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J Physiol 538:803–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrarelli F, Peterson MJ, Sarasso S, Riedner BA, Murphy MJ, Benca RM, Bria P, Kalin NH, Tononi G (2010) Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles. Am J Psychiatry 167:1339–1348

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrari C, Sorbi S (2021) The complexity of Alzheimer’s disease: an evolving puzzle. Physiol Rev 101:1047–1081

    Article  CAS  PubMed  Google Scholar 

  • Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186–189

    Article  CAS  PubMed  Google Scholar 

  • Flavell SW, Greenberg ME (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 31:563–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleidervish IA, Binshtok AM, Gutnick MJ (1998) Functionally distinct NMDA receptors mediate horizontal connectivity within layer 4 of mouse barrel cortex. Neuron 21:1055–1065

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ (1961) Harmonic oscillation as model for cortical excitability changes with attention in cats. Science 133:2058–2059

    Article  CAS  PubMed  Google Scholar 

  • Freund TF, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336:170–173

    Article  CAS  PubMed  Google Scholar 

  • Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  CAS  PubMed  Google Scholar 

  • Fuchs EC, Zivkovic AR, Cunningham MO, Middleton S, LeBeau FEN, Bannerman DM, Rozov A, Whittington MA, Traub RD, Rawlins JNP, Monyer H (2007) Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53:591–604

    Article  CAS  PubMed  Google Scholar 

  • Gibbs JW 3rd, Schroder GB, Coulter DA (1996) GABAA receptor function in developing rat thalamic reticular neurons: whole cell recordings of GABA-mediated currents and modulation by clonazepam. J Neurophysiol 76:2568–2579

    Article  CAS  PubMed  Google Scholar 

  • Gilbert CD, Wiesel TN (1983) Clustered intrinsic connections in cat visual cortex. J Neurosci 3:1116–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 12:1222–1223

    Article  CAS  PubMed  Google Scholar 

  • Goldensohn ES, Purpura DP (1963) Intracellular potentials of cortical neurons during focal epileptogenic discharges. Science 139:840–842

    Article  CAS  PubMed  Google Scholar 

  • Golding NL, Spruston N (1998) Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21:1189–1200

    Article  CAS  PubMed  Google Scholar 

  • Gooch HM, Bluett T, Perumal MB, Vo HD, Fletcher LN, Papacostas J, Jeffree RL, Wood M, Colditz MJ, McMillen J, Tsahtsarlis T, Amato D, Campbell R, Gillinder L, Williams SR (2022) High-fidelity dendritic sodium spike generation in human layer 2/3 neocortical pyramidal neurons. Cell Rep 41:111500

    Article  CAS  PubMed  Google Scholar 

  • Gray CM, McCormick DA (1996) Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274:109–113

    Article  CAS  PubMed  Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grenier F, Timofeev I, Steriade M (2001) Focal synchronization of ripples (80-200 Hz) in neocortex and their neuronal correlates. J Neurophysiol 86:1884–1898

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA (2005) Mechanisms for selection of basic motor programs–roles for the striatum and pallidum. Trends Neurosci 28:364–370

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez J, Issacson RS, Koppel BS (2010) Subacute sclerosing panencephalitis: an update. Dev Med Child Neurol 52:901–907

    Article  PubMed  Google Scholar 

  • Hall S, Hunt M, Simon A, Cunnington LG, Schofield IS, Traub RD, Whittington MA (2015) Unbalanced peptidergic inhibition in superficial neocortex generates sleep-associated seizure activity. J Neurosci 35:9302–9314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall SP, Traub RD, Adams NE, Cunningham MO, Schofield I, Jenkins A, Whittington MA (2018) Enhanced interlaminar excitation or reduced superficial layer inhibition in neocortex generates different spike and wave-like electrographic events in vitro. J Neurophysiol 119:49–61

    Article  CAS  PubMed  Google Scholar 

  • Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461:941–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Cruz A, Pape H-C (1989) Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus. J Neurophysiol 61:1270–1283

    Article  PubMed  Google Scholar 

  • Hess CW (1994) Developments in neurophysiology in the 19th century. Schweiz Rundsch Med Prax 83:483–490

    CAS  PubMed  Google Scholar 

  • Hille B (2001) Ionic channels of excitable membranes. Oxford University Press

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952a) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952b) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 116:497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952c) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116:424–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hof PR, Glezer II, Condé F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77–116

    Article  CAS  PubMed  Google Scholar 

  • Houser CR, Vaughn JE, Barber RP, Roberts E (1980) GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res 200:341–354

    Article  CAS  PubMed  Google Scholar 

  • Jack JJB, Noble D, Tsien RW (1975) Electric current flow in excitable cells. Clarendon Press

    Google Scholar 

  • Jaeschke RR, Sujkowska E, Sowa-Kućma M (2021) Methylphenidate for attention-deficit/hyperactivity disorder in adults: a narrative review. Psychopharmacology 238:2667–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahnsen H, Llinás R (1984a) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahnsen H, Llinás R (1984b) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349:227–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan LY, Jan YN (2012) Voltage-gated potassium channels and the diversity of electrical signalling. J Physiol 590:2591–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankel WR, Niedermeyer E (1985) Sleep spindles. J Clin Neurophysiol 2:1–35

    Article  CAS  PubMed  Google Scholar 

  • Jetté M, Sidney K, Blümchen G (1990) Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol 13:555–565

    Article  PubMed  Google Scholar 

  • Jiang J, Su Y, Zhang R, Li H, Tao L, Liu Q (2022) C. elegans enteric motor neurons fire synchronized action potentials underlying the defecation motor program. Nat Commun 13:2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joksovic PM, Bayliss DA, Todorovic SM (2005) Different kinetic properties of two T-type Ca2+ currents of rat reticular thalamic neurones and their modulation by enflurane. J Physiol 566:125–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones EG (2002) Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B Biol Sci 357:1659–1673

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalisman N, Silberberg G, Markram H (2005) The neocortical microcircuit as a tabula rasa. Proc Natl Acad Sci USA 102:880–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamondi A, Acsády L, Buzsáki G (1998) Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J Neurosci 18:3919–3928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapur N, Barker S, Burrows EH, Ellison D, Brice J, Illis LS, Scholey K, Colbourn C, Wilson B, Loates M (1994) Herpes simplex encephalitis: long term magnetic resonance imaging and neuropsychological profile. J Neurol Neurosurg Psychiatry 57:1334–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi Y (1993a) Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex. J Neurophysiol 69:416–431

    Article  CAS  PubMed  Google Scholar 

  • Klausberger T, Magill PJ, Márton LF, Roberts JDB, Cobden PM, Buzsáki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848

    Article  CAS  PubMed  Google Scholar 

  • König P, Engel AK, Singer W (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci 19:130–137

    Article  PubMed  Google Scholar 

  • Kopell N (2005) Does it have to be this complicated? Focus on “Single-column thalamocortical network model exhibiting gamma oscillations, spindles, and epileptogenic bursts”. J Neurophysiol 93:1829–1830

    Article  PubMed  Google Scholar 

  • Kopell N, Kramer MA, Malerba P, Whittington MA (2010) Are different rhythms good for different functions? Front Hum Neurosci 4:187. https://doi.org/10.3389/fnhum.2010.00187

    Article  PubMed  PubMed Central  Google Scholar 

  • Kornfeld J, Denk W (2018) Progress and remaining challenges in high-throughput volume electron microscopy. Curr Opin Neurobiol 50:261–267

    Article  CAS  PubMed  Google Scholar 

  • Kovács KA, O’Neill J, Schoenenberger P, Penttonen M, Ranguel Guerrero D, Csicsvari J (2016) Optogenetically blocking sharp wave ripple events in sleep does not interfere with the formation of stable spatial representation in the CA1 area of the hippocampus. PLoS One 11:e0164675

    Article  PubMed  PubMed Central  Google Scholar 

  • Kullmann DM, Ruiz A, Rusakov DM, Scott R, Semyanov A, Walker MC (2005) Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? Prog Biophys Mol Biol 87:33–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkum ME, Kaiser KM, Sakmann B (1999) Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proc Natl Acad Sci USA 96:14600–14604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkum ME, Wu J, Duverdin SA, Gidon A (2022) The guide to dendritic spikes of the mammalian cortex in vitro and in vivo. Neuroscience 489:15–33

    Article  CAS  PubMed  Google Scholar 

  • Ledergerber D, Larkum ME (2010) Properties of layer 6 pyramidal neuron apical dendrites. J Neurosci 30:13031–13044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefort S, Tomm C, Sarria J-CF, Petersen CCH (2009) The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61:301–316

    Article  CAS  PubMed  Google Scholar 

  • Li XG, Somogyi P, Ylinen A, Buzsáki G (1994) The hippocampal CA3 network: an in vivo intracellular labeling study. J Comp Neurol 339:181–208

    Article  CAS  PubMed  Google Scholar 

  • Llinás RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664

    Article  PubMed  Google Scholar 

  • Llinás R, Sugimori M (1980a) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 305:171–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Llinás R, Sugimori M (1980b) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305:197–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Loomba S, Straehle J, Gangadharan V, Heike N, Khalifa A, Motta A, Ju N, Sievers M, Gempt J, Meyer HS, Helmstaedter M (2022) Connectomic comparison of mouse and human cortex. Science 377:eabo0924

    Article  CAS  PubMed  Google Scholar 

  • Losonczy A, Makara J, Magee JC (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452:436–441

    Article  CAS  PubMed  Google Scholar 

  • Mackie GO (2004) Central neural circuitry in the jellyfish Aglantha: a model ‘simple nervous system’. Neurosignals 13:5–19

    Article  CAS  PubMed  Google Scholar 

  • Mainen ZF, Carnevale NT, Zador AM, Claiborne BJ, Brown TH (1996) Electrotonic architecture of hippocampal CA1 pyramidal neurons based on three-dimensional reconstructions. J Neurophysiol 76:1904–1923

    Article  CAS  PubMed  Google Scholar 

  • Major G, Larkman AU, Jonas P, Sakmann B, Jack JJ (1994) Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J Neurosci 14:4613–4638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann EO, Radcliffe CA, Paulsen O (2005) Hippocampal gamma-frequency oscillations: from interneurones to pyramidal cells, and back. J Physiol 562:55–63

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997b) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500:409–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  CAS  PubMed  Google Scholar 

  • Mason A, Larkman A (1990) Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. J Neurosci 10:1415–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason A, Nicoll A, Stratford K (1991) Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. J Neurosci 11:72–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto H, Ajmone Marsan C (1964) Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exp Neurol 9:286–304

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Pape H-C (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurons. J Physiol 431:291–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meeks JP, Mennerick S (2007) Action potential initiation and propagation in CA3 pyramidal axons. J Neurophysiol 97:3460–3472

    Article  PubMed  Google Scholar 

  • Melzer S, Michael M, Caputi A, Eliava M, Fuchs EC, Whittington MA, Monyer H (2012) Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex. Science 335:1506–1510

    Article  CAS  PubMed  Google Scholar 

  • Mercer A, Bannister AP, Thomson AM (2006) Electrical coupling between pyramidal cells in adult cortical regions. Brain Cell Biol 35:13–27

    Article  PubMed  Google Scholar 

  • Miles R (1990) Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro. J Physiol 428:61–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles R, Wong RKS (1986) Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. J Physiol 373:397–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles R, Wong RKS (1987) Inhibitory control of local excitatory circuits in the guinea-pig hippocampus. J Physiol 388:611–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles R, Tóth K, Gulyás AI, Hájos N, Freund TF (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16:815–823

    Article  CAS  PubMed  Google Scholar 

  • Mukhin KY, Mameniškienė R, Mironov MB, Kvaskova NE, Bobylova MY, Petrukhin AS, Wolf P (2012) Epilepsia partialis continua in tick-borne Russian spring-summer encephalitis. Acta Neurol Scand 125:345–352

    Article  CAS  PubMed  Google Scholar 

  • Mulle C, Steriade M, Deschênes M (1985) Absence of spindle oscillations in the cat anterior thalamic nuclei. Brain Res 334:169–171

    Article  CAS  PubMed  Google Scholar 

  • Nanou E, Catterall WA (2018) Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 98:466–481

    Article  CAS  PubMed  Google Scholar 

  • Napper RM, Harvey RJ (1988) Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J Comp Neurol 274:168–177

    Article  CAS  PubMed  Google Scholar 

  • Naskar S, Qi J, Pereira F, Gerfen CR, Lee S (2021) Cell-type-specific recruitment of GABAergic interneurons in the primary somatosensory cortex by long-range inputs. Cell Rep 34:108774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niedermeyer E (1997) Alpha rhythms as physiological and abnormal phenomena. Int J Psychophysiol 26:31–49

    Article  CAS  PubMed  Google Scholar 

  • Nilssen ES, Jacobsen B, Field G, Nair RR, Blankvoort S, Kentros C, Witter MP (2018) Inhibitory connectivity dominates the fan cell network in layer II of lateral entorhinal cortex. J Neurosci 38:9712–9727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojima H, Honda CN, Jones EG (1991) Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex. Cereb Cortex 1:80–94

    Article  CAS  PubMed  Google Scholar 

  • Olney NT, Spina S, Miller BL (2017) Frontotemporal dementia. Neurol Clin 35:339–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Pais I, Hormuzdi SG, Monyer H, Traub RD, Wood IC, Buhl EH, Whittington MA, LeBeau FEN (2003) Sharp wave-like activity in the hippocampus in vitro in mice lacking the gap junction protein connexin 36. J Neurophysiol 89:2046–2054

    Article  CAS  PubMed  Google Scholar 

  • Paré D, Steriade M, Deschênes M, Oakson G (1987) Physiological characteristics of anterior thalamic nuclei, a group devoid of inputs from reticular thalamic nucleus. J Neurophysiol 57:1669–1685

    Article  PubMed  Google Scholar 

  • Pasternak JF, Woolsey TA (1975) On the “selectivity” of the Golgi-Cox method. J Comp Neurol 160:307–312

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Mittermaier FX, Planert H, Schneider UC, Alle H, Geiger JRP (2019) High-throughput microcircuit analysis of individual human brains through next-generation multineuron patch-clamp. elife 8:e48178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penttonen M, Kamondi A, Acsády L, Buzsáki G (1998) Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo. Eur J Neurosci 10:718–728

    Article  CAS  PubMed  Google Scholar 

  • Peters A (2007) Golgi, Cajal, and the fine structure of the nervous system. Brain Res Rev 55:256–263

    Article  PubMed  Google Scholar 

  • Pi H-J, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A (2013) Cortical interneurons that specialize in disinhibitory control. Nature 503:521–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posner JB, Saper CB, Schiff ND, Classen J (2019) Plum and Posner’s diagnosis and treatment of stupor and coma, 5th edn. Oxford University Press, New York

    Book  Google Scholar 

  • Quigley C (2022) Forgotten rhythms? Revisiting the first evidence for rhythms in cognition. Eur J Neurosci 55:3266–3276

    Article  CAS  PubMed  Google Scholar 

  • Robertson JD (1981) Membrane structure. J Cell Biol 91:189s–204s

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema PR, König P, Engel AK, Sireteanu R, Singer W (1994) Reduced synchronization in the visual cortex of cats with strabismic amblyopia. Eur J Neurosci 6:1645–1655

    Article  CAS  PubMed  Google Scholar 

  • Roopun A, Middleton SJ, Cunningham MO, LeBeau FEN, Bibbig A, Whittington MA, Traub RD (2006) A beta2-frequency (20-30 Hz) oscillation in non-synaptic networks of somatosensory cortex. Proc Natl Acad Sci USA 103:15646–15650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roopun AK, Simonotto JD, Pierce ML, Jenkins A, Schofield I, Kaiser M, Whittington MA, Traub RD, Cunningham MO (2010) A non-synaptic mechanism underlying interictal discharges in human epileptic neocortex. Proc Natl Acad Sci USA 107:338–343

    Article  CAS  PubMed  Google Scholar 

  • Rose CR, Konnerth A (2001) Stores not just for storage. intracellular calcium release and synaptic plasticity. Neuron 31:519–522

    Article  CAS  PubMed  Google Scholar 

  • Roth A, Häusser M (2001) Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. J Physiol 535:445–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudy B, Fishell G, Lee SH, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol 71:45–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakai T, Kohsaka S, Kohsaka M (1999) Functional changes of the brainstem triggering vertex sharp wave with spindle. Psychiatry Clin Neurosci 53:167–169

    Article  CAS  PubMed  Google Scholar 

  • Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472

    Article  CAS  PubMed  Google Scholar 

  • Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol 505:605–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz D, Schuchmann S, Fisahn A, Draguhn A, Buhl EH, Petrasch-Parwez RE, Dermietzel R, Heinemann U, Traub RD (2001) Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31:831–840

    Article  CAS  PubMed  Google Scholar 

  • Schwartzkroin PA, Prince DA (1978) Cellular and field potential properties of epileptogenic hippocampal slices. Brain Res 147:117–130

    Article  CAS  PubMed  Google Scholar 

  • Shah MM (2014) Cortical HCN channels: function, trafficking and plasticity. J Physiol 592:2711–2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shewmon DA, Holmes GL, Byrne PA (1999) Consciousness in congenitally decorticate children: developmental vegetative state as self-fulfilling prophecy. Dev Med Child Neurol 41:364–374

    CAS  PubMed  Google Scholar 

  • Soltesz I, Crunelli V (1992) GABAA and pre- and post-synaptic GABAB receptor-mediated responses in the lateral geniculate nucleus. Prog Brain Res 90:151–169

    Article  CAS  PubMed  Google Scholar 

  • Soltesz I, Deschênes M (1993) Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. J Neurophysiol 70:97–116

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Freund TF, Hodgson AJ, Somogyi J, Beroukas D, Chubb IW (1985) Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of the cat. Brain Res 332:143–149

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Tamás G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26:113–135

    Article  CAS  PubMed  Google Scholar 

  • Spencer WA, Kandel ER (1961) Electrophysiology of hippocampal neurons IV. Fast prepotentials. J Neurophysiol 24:272–285

    Article  CAS  PubMed  Google Scholar 

  • Steriade M (1994) Sleep oscillations and their blockage by activating systems. J Psychiatry Neurosci 19:354–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steriade M (2001) The intact and sliced brain. MIT Press

    Book  Google Scholar 

  • Steriade M (2003) Neuronal substrates of sleep and epilepsy. Cambridge University Press, Cambridge

    Google Scholar 

  • Steriade M (2005) Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci 28:317–324

    Article  CAS  PubMed  Google Scholar 

  • Steriade M (2006) Grouping of brain rhythms in corticothalamic systems. Neuroscience 137:1087–1106

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Deschênes M (1984) The thalamus as a neuronal oscillator. Brain Res 320:1–63

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Deschênes M, Domich L, Mulle C (1985) Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 54:1473–1497

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Paré D, Datta S, Oakson G, Curró Dossi R (1990) Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. J Neurosci 10:2560–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steriade M, Amzica F, Nuñez A (1993a) Cholinergic and noradrenergic modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells. J Neurophysiol 70:1385–1400

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Nuñez A, Amzica F (1993b) A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252–3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steriade M, Nuñez A, Amzica F (1993c) Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13:3266–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steriade M, Amzica F, Neckelmann D, Timofeev I (1998) Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns. J Neurophysiol 80:1456–1479

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85:1969–1985

    Article  CAS  PubMed  Google Scholar 

  • Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 505:617–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart G, Spruston N, Häusser M (eds) (2016) Dendrites. Oxford University Press

    Google Scholar 

  • Tamás G, Lorincz A, Simon A, Szabadics J (2003) Identified sources and targets of slow inhibition in the neocortex. Science 299:1902–1905

    Article  PubMed  Google Scholar 

  • Thomson AM (1997) Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro. J Physiol 502:131–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson AM, Deuchars J (1997) Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. Cereb Cortex 7:510–522

    Article  CAS  PubMed  Google Scholar 

  • Thomson AM, Lamy C (2007) Functional maps of neocortical local circuitry. Front Neurosci 1:19–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson AM, Morris OT (2002) Selectivity in the inter-laminar connections made by neocortical neurones. J Neurocytol 31:239–246

    Article  PubMed  Google Scholar 

  • Timofeev I, Steriade M (1996) Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J Neurophysiol 76:4152–4168

    Article  CAS  PubMed  Google Scholar 

  • Traub RD, Bibbig A (2000) A model of high-frequency ripples in the hippocampus, based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons. J Neurosci 20:2086–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traub R, Llinás R (1977) The spatial distribution of ionic conductances in normal and axotomized motorneurons. Neuroscience 2:829–849

    Article  Google Scholar 

  • Traub R, Llinás R (1979) Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. J Neurophysiol 42:476–496

    Article  CAS  PubMed  Google Scholar 

  • Traub RD, Miles R (1991) Neuronal networks of the hippocampus. Cambridge University Press, New York

    Book  Google Scholar 

  • Traub RD, Whittington MA (2010) Cortical oscillations in health and disease. Oxford University Press, New York

    Book  Google Scholar 

  • Traub RD, Whittington MA (2022a) Processing of cell assemblies in the lateral entorhinal cortex. Rev Neurosci 33:829–847

    Article  PubMed  Google Scholar 

  • Traub RD, Wong RKS (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216:745–747

    Article  CAS  PubMed  Google Scholar 

  • Traub RD, Jefferys JGR, Miles R, Whittington MA, Tóth K (1994a) A branching dendritic model of a rodent CA3 pyramidal neurone. J Physiol 481:79–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traub RD, Whittington MA, Buhl EH, Jefferys JGR, Faulkner HJ (1999b) On the mechanism of the γ➔β frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation. J Neurosci 19:1088–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traub RD, Jefferys JGR, Whittington MA (1999c) Fast oscillations in cortical circuits. MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Traub RD, Bibbig A, Fisahn A, LeBeau FEN, Whittington MA, Buhl EH (2000) A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur J Neurosci 12:4093–4106

    Article  CAS  PubMed  Google Scholar 

  • Traub RD, Cunningham MO, Gloveli T, LeBeau FEN, Bibbig A, Buhl EH, Whittington MA (2003a) GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations. Proc Natl Acad Sci USA 100:11047–11052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traub RD, Pais I, Bibbig A, LeBeau FEN, Buhl EH, Hormuzdi SG, Monyer H, Whittington MA (2003b) Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of gamma oscillations in the hippocampus in vitro. Proc Natl Acad Sci USA 100:1370–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traub RD, Bibbig A, LeBeau FEN, Cunningham MO, Whittington MA (2005a) Persistent gamma oscillations in superficial layers of rat auditory neocortex: experiment and model. J Physiol 562:3–8

    Article  CAS  PubMed  Google Scholar 

  • Traub RD, Contreras D, Cunningham MO, Murray H, LeBeau FEN, Roopun A, Bibbig A, Wilent WB, Higley MJ, Whittington MA (2005b) Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles and epileptogenic bursts. J Neurophysiol 93:2194–2232

    Article  PubMed  Google Scholar 

  • Traub RD, Pais I, Bibbig A, LeBeau FEN, Buhl EH, Garner H, Monyer H, Whittington MA (2005c) Transient depression of excitatory synapses on interneurons contributes to epileptiform bursts during gamma oscillations in the mouse hippocampal slice. J Neurophysiol 94:1225–1235

    Article  PubMed  Google Scholar 

  • Traub RD, Whittington MA, Hall SP (2017) Does epileptiform activity represent a failure of neuromodulation to control central pattern generator-like neocortical behavior? Front Neural Circuits 11:78. https://doi.org/10.3389/fncir2017.00078

    Article  PubMed  PubMed Central  Google Scholar 

  • Traub RD, Moeller F, Rosch R, Baldeweg T, Whittington MA, Hall SP (2020a) Seizure initiation in infantile spasms vs. focal seizures: proposed common cellular mechanisms. Rev Neurosci 31:181–200

    Article  CAS  PubMed  Google Scholar 

  • Traub RD, Hawkins K, Adams NE, Hall S, Simon A, Whittington MA (2020c) Layer 4 pyramidal neuron dendritic bursting underlies a post-stimulus visual cortical alpha rhythm. Commun Biol 3(1):230. https://doi.org/10.1038/s42003-020-0947-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traub RD, Tu Y, Whittington MA (2021) Cell assembly formation and structure in a piriform cortex model. Rev Neurosci 33:111–132

    Article  PubMed  Google Scholar 

  • Uhlhaas PJ, Haenschel C, Nikolić D, Singer W (2008) The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 34:927–943

    Article  PubMed  PubMed Central  Google Scholar 

  • Ulrich D, Huguenard JR (1996) GABAB receptor-mediated responses in GABAergic projection neurones of rat nucleus reticularis thalami in vitro. J Physiol 493:845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Krosigk M, Bal T, McCormick DA (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261:361–364

    Article  Google Scholar 

  • Wang XJ, Rinzel J (1993) Spindle rhythmicity in the reticularis thalami nucleus: synchronization among mutually inhibitory neurons. Neuroscience 53:899–904

    Article  CAS  PubMed  Google Scholar 

  • West DC, Mercer A, Kirchhecker S, Morris OT, Thomson AM (2006) Layer 6 cortico-thalamic pyramidal cells preferentially innervate interneurons and generate facilitating EPSPs. Cereb Cortex 16:200–211

    Article  PubMed  Google Scholar 

  • Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH (2000) Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol 38:315–336

    Article  CAS  PubMed  Google Scholar 

  • Williams SR, Stuart GJ (1999) Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons. J Physiol 521:467–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winterer J, Maier N, Wozny C, Beed P, Breustedt J, Evangelista R, Peng Y, D’Albis T, Kempter R, Schmitz D (2017) Excitatory microcircuits within superficial layers of the medial entorhinal cortex. Cell Rep 19:1110–1116

    Article  CAS  PubMed  Google Scholar 

  • Wong RKS, Prince DA (1978) Participation of calcium spikes during intrinsic burst firing in hippocampal neurons. Brain Res 159:385–390

    Article  CAS  PubMed  Google Scholar 

  • Wong RKS, Stewart M (1992) Different firing patterns generated in dendrites and somata of CA1 pyramidal neurones in guinea-pig hippocampus. J Physiol 457:675–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yetman MJ, Washburn E, Hyun JH, Osakada F, Hayano Y, Zeng H, Callaway EM, Kwon H-B, Taniguchi H (2019) Intersectional monosynaptic tracing for dissecting subtype-specific organization of GABAergic interneuron inputs. Nat Neurosci 22:492–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York GK 3rd, Steinberg DA (2011) Hughlings Jackson’s neurological ideas. Brain 134:3106–3113

    Article  PubMed  Google Scholar 

  • Zhong W, Ciatipis M, Wolfenstetter T, Jessberger J, Müller C, Ponsel S, Yanovsky Y, Brankačk J, Tort ABL, Draguhn A (2017) Selective entrainment of gamma subbands by different slow network oscillations. Proc Natl Acad Sci USA 114:4519–4524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zifkin BG, Avanzini G (2009) Clinical neurophysiology with special reference to the electroencephalogram. Epilepsia 50(Suppl. 3):30–38

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Traub, R., Draguhn, A. (2024). Complexities of Cortex and the Need for Detailed Models. In: Brain Leitmotifs. Springer, Cham. https://doi.org/10.1007/978-3-031-54537-5_7

Download citation

Publish with us

Policies and ethics