Skip to main content

Probabilistic Inference Based Incremental Graph Index for Similarity Search on Social Networks

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

To find k neighbor users on social networks, the efficient approximate nearest neighbor search (ANNS) is useful. Existing graph index methods have shown attractive performance, but suffer from inaccuracy w.r.t. unindexed queries. To achieve both indexed and unindexed queries for graph-index methods, we propose an incremental graph index based method for ANNS on social networks. First, graph convolutional network based on attention mechanism is adopted to embed the social network into low-dimensional vector space, on which the graph index is constructed efficiently. To add the unindexed queries to the graph index incrementally, we propose Bayesian network (BN) learned from social interactions to represent dependency relations of unindexed queries and their neighbors, and perform probabilistic inferences in BN to infer the closest neighbors of unindexed queries. Extensive experiments show that our proposed method outperforms the state-of-the-art methods on both execution time and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://nrvis.com/download/data/dynamic/.

  2. 2.

    https://snap.stanford.edu/data/soc-RedditHyperlinks.html.

  3. 3.

    https://www.aminer.cn/data-sna#Twitter-Dynamic-Net.

  4. 4.

    https://aminer.org/Influencelocality.

  5. 5.

    https://github.com/ZJULearning/SSG.

  6. 6.

    https://github.com/ZJULearning/nsg.

  7. 7.

    https://github.com/ZJULearning/efanna graph.

  8. 8.

    https://github.com/jalvarm/hcnng.

  9. 9.

    https://github.com/facebookresearch/faiss.

  10. 10.

    https://github.com/FALCONN-LIB/FALCONN.

  11. 11.

    https://github.com/spotify/annoy.

References

  1. Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., Schmidt, L.: Practical and optimal lsh for angular distance. In: Advances in Neural Information Processing Systems, 28 (2015)

    Google Scholar 

  2. Bernhardsson, E.: Annoy at github. GitHub. Repéré à https://github.com/spotify/annoy (2015)

  3. Bi, W., Ma, J., Zhu, X., Wang, W., Zhang, A.: Cloud service selection based on weighted KD tree nearest neighbor search. Appl. Soft Comput. J. 131, 109780 (2022)

    Google Scholar 

  4. Cheng, D., Huang, J., Zhang, S., Wu, Q.: A robust method based on locality sensitive hashing for k-nearest neighbors searching. Wireless Networks, pp. 1–14 (2022)

    Google Scholar 

  5. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for generic similarity measures. In: Proceedings of the 20th international conference on World wide web, pp. 577–586 (2011)

    Google Scholar 

  6. Ezugwu, A.E., et al.: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 110, 104743 (2022)

    Google Scholar 

  7. Fu, C., Wang, C., Cai, D.: High dimensional similarity search with satellite system graph: Efficiency, scalability, and unindexed query compatibility. IEEE Trans. Pattern Anal. Mach. Intell. 44(8), 4139–4150 (2021)

    Google Scholar 

  8. Fu, C., Xiang, C., Wang, C., Cai, D.: Fast approximate nearest neighbor search with the navigating spreading-out graph. Proc. VLDB Endow. 12(5) (2019)

    Google Scholar 

  9. Gorunescu, F.: Data Mining: Concepts, models and techniques. Springer Science, San Francisco (2011)

    Book  Google Scholar 

  10. Harwood, B., Drummond, T.: Fanng: Fast approximate nearest neighbour graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5713–5722 (2016)

    Google Scholar 

  11. Hu, D., Nie, F., Li, X.: Discrete spectral hashing for efficient similarity retrieval. IEEE Trans. Image Process. 28(3), 1080–1091 (2018)

    Article  MathSciNet  Google Scholar 

  12. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with gpus. IEEE Trans. on Big Data 7(3), 535–547 (2019)

    Article  Google Scholar 

  13. Kosuge, A., Yamamoto, K., Akamine, Y., Oshima, T.: An soc-fpga-based iterative-closest-point accelerator enabling faster picking robots. IEEE Trans. Industr. Electron. 68(4), 3567–3576 (2020)

    Article  Google Scholar 

  14. Lejsek, H., Amsaleg, L.: Nv-tree: an efficient disk-based index for approximate search in very large high-dimensional collections. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 869–883 (2008)

    Article  Google Scholar 

  15. Lejsek, H., Amsaleg, L.: Nv-tree: nearest neighbors at the billion scale. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, pp. 1–8 (2011)

    Google Scholar 

  16. Li, J., Yue, K., Li, J., Duan, L.: A probabilistic inference based approach for querying associative entities in knowledge graph. In: Proceedings of the Web and Big Data: 5th International Joint Conference, pp. 75–89 (2021)

    Google Scholar 

  17. Li, P., Shrivastava, A., Moore, J., König, A.: Hashing algorithms for large-scale learning. In: Advances in Neural Information Processing Systems 24 (2011)

    Google Scholar 

  18. Munoz, J.V., Gonçalves, M.A., Dias, Z., Torres, R.d.S.: Hierarchical clustering-based graphs for large scale approximate nearest neighbor search. Pattern Recognition 96, 106970 (2019)

    Google Scholar 

  19. Pan, Z., Wang, L., Wang, Y., Liu, Y.: Product quantization with dual codebooks for approximate nearest neighbor search. Neurocomputing 401, 59–68 (2020)

    Article  Google Scholar 

  20. Paparrizos, J., Edian, I., Liu, C., Elmore, A.J., Franklin, M.J.: Fast adaptive similarity search through variance-aware quantization. In: 2022 IEEE 38th International Conference on Data Engineering, pp. 2969–2983 (2022)

    Google Scholar 

  21. Paredes, R., Chávez, E.: Using the k-nearest neighbor graph for proximity searching in metric spaces. In: Proceedings of the String Processing and Information Retrieval: 12th International Conference, pp. 127–138 (2005)

    Google Scholar 

  22. Qi, Z., Yue, K., Duan, L., Hu, K., Liang, Z.: Dynamic embeddings for efficient parameter learning of Bayesian network with multiple latent variables. Inf. Sci. 590, 198–216 (2022)

    Article  Google Scholar 

  23. Qi, Z., Yue, K., Duan, L., Liang, Z.: Similarity search with graph index on directed social network embedding. In: Web Engineering: 22nd International Conference, pp. 82–97 (2022)

    Google Scholar 

  24. Wang, M., Xu, X., Yue, Q., Wang, Y.: A comprehensive survey and experimental comparison of graph-based approximate nearest neighbor search. Proc. VLDB Endowment 14(11), 1964–1978 (2021)

    Article  Google Scholar 

  25. Welling, M., Kingma, D.P.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  26. Xu, X., Wang, M., Wang, Y., Ma, D.: Two-stage routing with optimized guided search and greedy algorithm on proximity graph. Knowl.-Based Syst. 229, 107305 (2021)

    Google Scholar 

  27. Yap, G.E., Tan, A.H., Pang, H.H.: Explaining inferences in bayesian networks. Appl. Intell. 29, 263–278 (2008)

    Article  Google Scholar 

  28. Yu, S., Sun, Y., Guo, Z.: Graph regularized unsupervised deep hashing for large scale image retrieval. In: 2020 5th IEEE International Conference on Big Data Analytics, pp. 292–297 (2020)

    Google Scholar 

  29. Zhang, T., Liu, B., Niu, D., Lai, K., Xu, Y.: Multiresolution graph attention networks for relevance matching. In: Proceedings of the 27th ACM international conference on information and knowledge management, pp. 933–942 (2018)

    Google Scholar 

  30. Zheng, B., Zhao, X., Weng, L., Nguyen, Q.V.H., Liu, H., Jensen, C.S.: Pm-lsh: a fast and accurate in-memory framework for high-dimensional approximate nn and closest pair search. VLDB J. 31(6), 1339–1363 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by the National Natural Science Foundation of China (62002311), Major Project of Science and Technology of Yunnan Province (202202AD080001), Yunnan Key Laboratory of Intelligent Systems and Computing (202205AG070003), Research Foundation of Educational Department of Yunnan Province (2023J0022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, T., Qi, Z., Yue, K., Duan, L. (2024). Probabilistic Inference Based Incremental Graph Index for Similarity Search on Social Networks. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 562. Springer, Cham. https://doi.org/10.1007/978-3-031-54528-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54528-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54527-6

  • Online ISBN: 978-3-031-54528-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics