Skip to main content

Implementation of the Time Series and the Convolutional Vision Transformers for Biological Signal Processing - Blood Pressure Estimation from Photoplethysmogram

  • Conference paper
  • First Online:
ICT Innovations 2023. Learning: Humans, Theory, Machines, and Data (ICT Innovations 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1991))

Included in the following conference series:

  • 41 Accesses

Abstract

Blood pressure estimation is crucial for early detection and prevention of many cardiovascular diseases. This paper explores the potential of the relatively new transformer architecture for accomplishing this task in the domain of biological signal processing. Several preceding studies of blood pressure estimation solely for PPG signals have had success with CNN and LSTM neural networks. In this study two types of transformer variants are considered: the time series and the convolutional vision transformers. The results obtained from our research indicate that this type of approach may be unsuitable for the task. However, further research is needed to make a definitive claim, since only simple transformer type are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  2. Escabí, M.A.: Biosignal processing. In: Introduction to Biomedical Engineering. Elsevier, pp. 549–625 (2005)

    Google Scholar 

  3. Berkaya, S.K., Uysal, A.K., Gunal, E.S., Ergin, S., Gunal, S., Gulmezoglu, M.B.: A survey on ECG analysis. Biomed. Signal Process. Control 43, 216–235 (2018)

    Article  Google Scholar 

  4. Cheriyedath, S.: Photoplethysmography (PPG). news-medical (2019). https://www.news-medical.net/health/Photoplethysmography-(PPG).aspx,. Accessed 30 July 2023

  5. High blood pressure causes and risk factors (2022). https://www.nhlbi.nih.gov/health/high-blood-pressure/causes,. Accessed 12 May 2023

  6. Smith, R.P., Argod, J., Pépin, J.-L., Lévy, P.A.: Pulse transit time: an appraisal of potential clinical applications. Thorax 54(5), 452–457 (1999)

    Article  Google Scholar 

  7. Liu, M., Po, L.-M., Fu, H.: Cuffless blood pressure estimation based on photoplethysmography signal and its second derivative. Int. J. Comput. Theory Eng. 9(3), 202 (2017)

    Article  Google Scholar 

  8. Mousavi, S.S., Firouzmand, M., Charmi, M., Hemmati, M., Moghadam, M., Ghorbani, Y.: Blood pressure estimation from appropriate and inappropriate PPG signals using a whole-based method. Biomed. Signal Process. Control 47, 196–206 (2019). https://www.sciencedirect.com/science/article/pii/S1746809418302209

  9. Kachuee, M., Kiani, M.M., Mohammadzade, H., Shabany, M.: Cuffless blood pressure estimation algorithms for continuous health-care monitoring. IEEE Trans. Biomed. Eng. 64(4), 859–869 (2016)

    Article  Google Scholar 

  10. Ma, C., et al.: KD-informer: a cuff-less continuous blood pressure waveform estimation approach based on single photoplethysmography. IEEE J. Biomed. Health Inform. 27(5), 2219–2230 (2023)

    Article  Google Scholar 

  11. Tolstikhin, I.O., et al.: MLP-mixer: an all-MLP architecture for vision. In: Advances in Neural Information Processing Systems, vol. 34, pp. 24261–24272 (2021)

    Google Scholar 

  12. Huang, B., Chen, W., Lin, C.-L., Juang, C.-F., Wang, J.: MLP-BP: a novel framework for Cuffless blood pressure measurement with PPG and ECG signals based on MLP-mixer neural networks. Biomed. Signal Process. Control 73, 103404 (2022)

    Article  Google Scholar 

  13. White, W.B., et al.: National standard for measurement of resting and ambulatory blood pressures with automated sphygmomanometers. Hypertension 21(4), 504–509 (1993)

    Article  Google Scholar 

  14. O’Brien, E., et al.: The British hypertension society protocol for the evaluation of blood pressure measuring devices. J. Hypertens. 11(Suppl 2), S43–S62 (1993)

    Google Scholar 

  15. Kuzmanov, I., Ackovska, N., Madevska Bogadnova, A.: Transformer models for processing biological signal (2023)

    Google Scholar 

  16. Ntakouris, T.: Timeseries classification with a transformer model (2021). https://keras.io/examples/timeseries/timeseries_transformer_classification/. Accessed 13 May 2023

  17. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, "TensorFlow: Large-scale machine learning on heterogeneous systems," 2015, software available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

  18. Luz, E.J.D.S., Schwartz, W.R., Cámara-Chávez, G., Menotti, D.: ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Prog. Biomed. 127, 144–164 (2016). https://www.sciencedirect.com/science/article/pii/S0169260715003314

  19. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  20. Fazeli, S.: ECG heartbeat categorization dataset (2022). https://www.kaggle.com/datasets/shayanfazeli/heartbeat?datasetId=2941. Accessed 12 May 2023

  21. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3(1), 1–9 (2016)

    Article  MathSciNet  Google Scholar 

  22. Baker, S., Xiang, W., Atkinson, I.: A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms. Comput. Methods Prog. Biomed. 207, 106191 (2021)

    Article  Google Scholar 

  23. Mladenovska, T., Bogdanova, A.M., Kostoska, M., Koteska, B., Ackovska, N.: Estimation of blood pressure from arterial blood pressure using PPG signals (2023)

    Google Scholar 

  24. Makowski, D., et al.: NeuroKit2: a python toolbox for neurophysiological signal processing. Behav. Res. Methods 53(4), 1689–1696 (2021). https://doi.org/10.3758%2Fs13428-020-01516-y

  25. Shin, H., Min, S.D.: Feasibility study for the non-invasive blood pressure estimation based on PPG morphology: normotensive subject study. Biomed. Eng. Online 16, 1–14 (2017)

    Article  Google Scholar 

  26. Xing, X., Sun, M.: Optical blood pressure estimation with photoplethysmography and FFT-based neural networks. Biomed. Opt. Express 7(8), 3007–3020 (2016)

    Article  Google Scholar 

  27. Chowdhury, M.H., et al.: Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques. Sensors 20(11), 3127 (2020). https://www.mdpi.com/1424-8220/20/11/3127

  28. Lehocki, F., et al.: Smartpatch for victims management in emergency telemedicine. In: 2021 13th International Conference on Measurement, pp. 146–149. IEEE (2021)

    Google Scholar 

Download references

Acknowledgment

This paper has been written thanks to the support of the "Smart Patch for Life Support Systems" - NATO project G5825 SP4LIFE and by the National project IBS4LIFE of Faculty of Computer Science and Engineering, at Ss. Cyril and Methodius University in Skopje.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Madevska Bogdanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuzmanov, I., Ackovska, N., Lehocki, F., Bogdanova, A.M. (2024). Implementation of the Time Series and the Convolutional Vision Transformers for Biological Signal Processing - Blood Pressure Estimation from Photoplethysmogram. In: Mihova, M., Jovanov, M. (eds) ICT Innovations 2023. Learning: Humans, Theory, Machines, and Data. ICT Innovations 2023. Communications in Computer and Information Science, vol 1991. Springer, Cham. https://doi.org/10.1007/978-3-031-54321-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54321-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54320-3

  • Online ISBN: 978-3-031-54321-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics