Skip to main content

Multi-scale Heat Kernel Graph Network for Graph Classification

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2023)

Abstract

Graph neural networks (GNNs) have been shown to be useful in a variety of graph classification tasks, from bioinformatics to social networks. However, most GNNs represent the graph using local neighbourhood aggregation. This mechanism is inherently difficult to learn about the global structure of a graph and does not have enough expressive power to distinguish simple non-isomorphic graphs. To overcome the limitation, here we propose multi-head heat kernel convolution for graph representation. Unlike the conventional approach of aggregating local information from neighbours using an adjacency matrix, the proposed method uses multiple heat kernels to learn the local information and the global structure simultaneously. The proposed algorithm outperforms the competing methods in most benchmark datasets or at least shows comparable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacciu, D., Errica, F., Micheli, A., Podda, M.: A gentle introduction to deep learning for graphs. Neural Netw. 129, 203–221 (2020)

    Article  Google Scholar 

  2. Chung, F.R., Graham, F.C.: Spectral graph theory. No. 92, American Mathematical Soc. (1997)

    Google Scholar 

  3. Dobson, P.D., Doig, A.J.: Distinguishing enzyme structures from non-enzymes without alignments. J. Mol. Biol. 330(4), 771–783 (2003)

    Article  Google Scholar 

  4. Donnat, C., Zitnik, M., Hallac, D., Leskovec, J.: Learning structural node embeddings via diffusion wavelets. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1320–1329 (2018)

    Google Scholar 

  5. Duvenaud, D., et al.: Convolutional networks on graphs for learning molecular fingerprints. arXiv preprint arXiv:1509.09292 (2015)

  6. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  7. Garg, V., Jegelka, S., Jaakkola, T.: Generalization and representational limits of graph neural networks. In: International Conference on Machine Learning, pp. 3419–3430. PMLR (2020)

    Google Scholar 

  8. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  10. Grigor’Yan, A.: Heat kernels on manifolds, graphs and fractals. In: Casacuberta, C., Miro-Roig, R.M., Verdera, J., Xambo-Descamps, S. (eds.) European Congress of Mathematics. Progress in Mathematics, vol. 201, pp. 393–406. Birkhauser, Basel (2001). https://doi.org/10.1007/978-3-0348-8268-2_22

  11. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. arXiv preprint arXiv:1706.02216 (2017)

  12. Kejani, M.T., Dornaika, F., Talebi, H.: Graph convolution networks with manifold regularization for semi-supervised learning. Neural Netw. 127, 160–167 (2020)

    Article  Google Scholar 

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  14. Kriege, N., Mutzel, P.: Subgraph matching kernels for attributed graphs. arXiv preprint arXiv:1206.6483 (2012)

  15. Morris, C., et al.: Weisfeiler and leman go neural: higher-order graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4602–4609 (2019)

    Google Scholar 

  16. Nikolentzos, G., Dasoulas, G., Vazirgiannis, M.: k-hop graph neural networks. Neural Netw. 130, 195–205 (2020)

    Article  Google Scholar 

  17. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical compound retrieval and classification. Knowl. Inf. Syst. 14(3), 347–375 (2008)

    Article  Google Scholar 

  18. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (tog) 38(5), 1–12 (2019)

    Article  Google Scholar 

  19. Xiao, B., Hancock, E.R., Wilson, R.C.: Graph characteristics from the heat kernel trace. Pattern Recogn. 42(11), 2589–2606 (2009)

    Article  Google Scholar 

  20. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  21. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.J., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: International Conference on Machine Learning, pp. 5453–5462. PMLR (2018)

    Google Scholar 

  22. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374 (2015)

    Google Scholar 

  23. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983 (2018)

    Google Scholar 

  24. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. arXiv preprint arXiv:1806.08804 (2018)

Download references

Acknowledgments

This research was supported by Institute for Information communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2022-0-00653, Voice Phishing Information Collection and Processing and Development of a Big Data Based Investigation Support System), BK21 FOUR program of the National Research Foundation of Korea funded by the Ministry of Education(NRF5199991014091), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C2003474) and the Ajou University research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjung Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jhee, J.H., Yeon, J., Kwak, Y., Shin, H. (2024). Multi-scale Heat Kernel Graph Network for Graph Classification. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14506. Springer, Cham. https://doi.org/10.1007/978-3-031-53966-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53966-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53965-7

  • Online ISBN: 978-3-031-53966-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics