Skip to main content

What Data Should Be Collected for a Good Handball Expected Goal model?

  • Conference paper
  • First Online:
Machine Learning and Data Mining for Sports Analytics (MLSA 2023)

Abstract

Expected goal models (xG) are of great importance as they are the most accurate predictor of future performance of teams and players in the world of soccer. This metric can be modeled by machine learning, and the models developed consider an increasing number of attributes, which increases the cost of learning it. The use of xG is not widespread in handball, so the question of learning it for this sport arose, in particular which attributes are relevant for learning. Here, we used a wrapper approach to determine these relevant attributes and guide teams through the data collection stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.statsperform.com/opta-analytics/.

  2. 2.

    https://www.scisports.com/total-shots-ratio/.

  3. 3.

    https://en.wikipedia.org/wiki/Fenwick_(statistic).

  4. 4.

    https://en.wikipedia.org/wiki/Corsi_(statistic).

  5. 5.

    https://www.statsperform.com/opta/.

  6. 6.

    https://statsbomb.com/.

  7. 7.

    https://statsbomb.com/soccer-metrics/expected-goals-xg-explained/.

  8. 8.

    https://statsbomb.com/what-we-do/soccer-data/.

References

  1. Anzer, G., Bauer, P.: A goal scoring probability model for shots based on synchronized positional and event data in football (soccer). Front. Sports Active Living 3, 624475 (2021)

    Google Scholar 

  2. Aurenhammer, F.: Voronoi diagrams: a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  4. Buchheit, M., Allen, A., Poon, T.K., Modonutti, M., Gregson, W., Di Salvo, V.: Integrating different tracking systems in football: multiple camera semi-automatic system, local position measurement and GPS technologies. J. Sports Sci. 32(20), 1844–1857 (2014)

    Article  Google Scholar 

  5. Cardinale, M., Whiteley, R., Hosny, A.A., Popovic, N.: Activity profiles and positional differences of handball players during the world championships in Qatar 2015. Int. J. Sports Physiol. Perform. 12(7), 908–915 (2017)

    Article  Google Scholar 

  6. Cavus, M., Biecek, P.: Explainable expected goal models for performance analysis in football analytics (2022). https://doi.org/10.48550/ARXIV.2206.07212, https://arxiv.org/abs/2206.07212

  7. Chen, T., et al.: Xgboost: extreme gradient boosting. R Package Version 0.4-2 1(4), 1–4 (2015)

    Google Scholar 

  8. Delaunay, B.: Sur la sphére vide. Proceedings du Congrés international des mathématiciens de 1924, pp. 695–700 (1924)

    Google Scholar 

  9. Fairchild, A., Pelechrinis, K., Kokkodis, M.: Spatial analysis of shots in MLS: a model for expected goals and fractal dimensionality. J. Sports Anal. 4(3), 165–174 (2018)

    Article  Google Scholar 

  10. Fawcett, T.: Roc graphs: Notes and practical considerations for researchers. Technical report HPL-2003-4, HP Laboratories (2003)

    Google Scholar 

  11. Germano, M.: Turbulence: the filtering approach. J. Fluid Mech. 238, 325–336 (1992)

    Article  MathSciNet  Google Scholar 

  12. Gudmundsson, J., Horton, M.: Spatio-temporal analysis of team sports. ACM Comput. Surv. (CSUR) 50(2), 1–34 (2017)

    Article  Google Scholar 

  13. Hansen, C., Sanz-Lopez, F., Whiteley, R., Popovic, N., Ahmed, H.A., Cardinale, M.: Performance analysis of male handball goalkeepers at the world handball championship 2015. Biol. Sport 34(4), 393 (2017)

    Article  Google Scholar 

  14. Hansen, C., Whiteley, R., Wilhelm, A., Popovic, N., Ahmed, H., Cardinale, M., et al.: A video-based analysis to classify shoulder injuries during the handball world championships 2015. Sportverletzung Sportschaden: Organ der Gesellschaft fur Orthopadisch-traumatologische Sportmedizin 33(1), 30–35 (2019)

    Google Scholar 

  15. Herold, M., Goes, F., Nopp, S., Bauer, P., Thompson, C., Meyer, T.: Machine learning in men’s professional football: current applications and future directions for improving attacking play. Int. J. Sports Sci. Coach. 14(6), 798–817 (2019). https://doi.org/10.1177/1747954119879350

  16. Hewitt, J.H., Karakuş, O.: A machine learning approach for player and position adjusted expected goals in football (soccer) (2023). https://doi.org/10.48550/ARXIV.2301.13052, https://arxiv.org/abs/2301.13052

  17. Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  18. Kim, S.: Voronoi analysis of a soccer game. Nonlinear Anal. Model. Control 9(3), 233–240 (2004). https://doi.org/10.15388/NA.2004.9.3.15154, https://www.journals.vu.lt/nonlinear-analysis/article/view/15154

  19. Kingsford, C., Salzberg, S.L.: What are decision trees? Nat. Biotechnol. 26(9), 1011–1013 (2008)

    Article  Google Scholar 

  20. Kohavi, R., John, G.H.: The wrapper approach. In: Liu, H., Motoda, H. (eds.) Feature Extraction, Construction and Selection. The Springer International Series in Engineering and Computer Science, vol. 453, pp. 33–50. Springer, Boston, MA (1998). https://doi.org/10.1007/978-1-4615-5725-8_3

  21. Lago-Ballesteros, J., Lago-Peñas, C.: Performance in team sports: identifying the keys to success in soccer. J. Hum. Kinet. 25(2010), 85–91 (2010)

    Article  Google Scholar 

  22. LaValley, M.P.: Logistic regression. Circulation 117(18), 2395–2399 (2008)

    Article  Google Scholar 

  23. Macdonald, B.: Adjusted plus-minus for NHL players using ridge regression with goals, shots, fenwick, and corsi. J. Quant. Anal. Sports 8(3) (2012). https://doi.org/10.1515/1559-0410.1447

  24. Macdonald, B.: An expected goals model for evaluating NHL teams and players. In: Proceedings of the 2012 MIT Sloan Sports Analytics Conference (2012)

    Google Scholar 

  25. Madrero Pardo, P.: Creating a model for expected Goals in football using qualitative player information. Ph.D. thesis, UPC, Facultat d’Informàtica de Barcelona, Departament de Ciéncies de la Computació, June 2020. http://hdl.handle.net/2117/328922

  26. Madrero Pardo, P.: Creating a model for expected goals in football using qualitative player information. Master’s thesis, Universitat Politècnica de Catalunya (2020)

    Google Scholar 

  27. Pettersen, S.A., et al.: Soccer video and player position dataset. In: Proceedings of the 5th ACM Multimedia Systems Conference, pp. 18–23 (2014)

    Google Scholar 

  28. Rathke, A.: An examination of expected goals and shot efficiency in soccer. J. Hum. Sport Exerc. 12(2), 514–529 (2017)

    Google Scholar 

  29. Robberechts, P., Davis, J.: How data availability affects the ability to learn good XG models. In: Brefeld, U., Davis, J., Van Haaren, J., Zimmermann, A. (eds.) Machine Learning and Data Mining for Sports Analytics. MLSA 2020. CCIS, vol. 1324, pp. 17–27. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64912-8_2

  30. Ruiz, H., Lisboa, P., Neilson, P., Gregson, W.: Measuring scoring efficiency through goal expectancy estimation. In: ESANN 2015 proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 149–154 (2015)

    Google Scholar 

  31. Sanford, R., Gorji, S., Hafemann, L.G., Pourbabaee, B., Javan, M.: Group activity detection from trajectory and video data in soccer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 898–899 (2020)

    Google Scholar 

  32. Scott, A., Uchida, I., Onishi, M., Kameda, Y., Fukui, K., Fujii, K.: Soccertrack: A dataset and tracking algorithm for soccer with fish-eye and drone videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3569–3579 (2022)

    Google Scholar 

  33. Serpiello, F., et al.: Validity of an ultra-wideband local positioning system to measure locomotion in indoor sports. J. Sports Sci. 36(15), 1727–1733 (2018)

    Article  Google Scholar 

  34. Spearman, W.: Beyond expected goals. In: Proceedings of the 12th MIT Sloan Sports Analytics Conference, pp. 1–17 (2018)

    Google Scholar 

  35. Taki, T., Hasegawa, J.: Visualization of dominant region in team games and its application to teamwork analysis. In: Proceedings Computer Graphics International 2000, pp. 227–235 (2000). https://doi.org/10.1109/CGI.2000.852338

  36. Taki, T., Hasegawa, J.I., Fukumura, T.: Development of motion analysis system for quantitative evaluation of teamwork in soccer games. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol. 3, pp. 815–818. IEEE (1996)

    Google Scholar 

  37. Tenga, A., Ronglan, L.T., Bahr, R.: Measuring the effectiveness of offensive match-play in professional soccer. Eur. J. Sport Sci. 10(4), 269–277 (2010)

    Article  Google Scholar 

  38. Tiippana, T., et al.: How accurately does the expected goals model reflect goalscoring and success in football? (2020)

    Google Scholar 

  39. Umami, I., Gautama, D., Hatta, H.: Implementing the expected goal (xG) model to predict scores in soccer matches. Int. J. Inform. Inf. Syst. 4(1), 38–54 (2021). https://doi.org/10.47738/ijiis.v4i1.76, http://ijiis.org/index.php/IJIIS/article/view/76

  40. Umami, I., Gautama, D.H., Hatta, H.R.: Implementing the expected goal (xG) model to predict scores in soccer matches. Int. J. Inform. Inf. Syst. 4(1), 38–54 (2021)

    Article  Google Scholar 

  41. Van Haaren, J.: Why would i trust your numbers? On the explainability of expected values in soccer. arXiv preprint arXiv:2105.13778 (2021)

Download references

Acknowledgements

This work was partially funded by the ANR and the Normandy Region as part of the HAISCoDe project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Mortelier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mortelier, A., Rioult, F., Komar, J. (2024). What Data Should Be Collected for a Good Handball Expected Goal model?. In: Brefeld, U., Davis, J., Van Haaren, J., Zimmermann, A. (eds) Machine Learning and Data Mining for Sports Analytics. MLSA 2023. Communications in Computer and Information Science, vol 2035. Springer, Cham. https://doi.org/10.1007/978-3-031-53833-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53833-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53832-2

  • Online ISBN: 978-3-031-53833-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics