Skip to main content

Bioremediation of Heavy Metals—Its Pros and Cons

  • Chapter
  • First Online:
Heavy Metal Remediation

Abstract

Heavy metal pollution poses a substantial public health hazard, manifesting in diverse toxicological effects. Conventional remediation methods, while effective, are costly and generate environmentally harmful byproducts. In response, the adoption of green technologies utilizing biological agents, such as bacteria, algae, and fungi, has gained prominence for heavy metal removal due to their cost-effectiveness and efficiency. This paper explores the field of bioremediation, explicitly focusing on removing heavy metals like Lead(II), Nickel(II), and Chromium(VI) using those microorganisms. Bioremediation offers an eco-friendly and economically viable solution to combat the adverse impacts of heavy metal pollution. The paper elucidates the intricate mechanisms employed by these microorganisms, encompassing biosorption, bioaccumulation, biotransformation, and detoxification processes, all of which enable the conversion of toxic heavy metals into non-toxic forms or their sequestration. By comprehending the complex mechanisms harnessed by bacteria, fungi, and algae, this research seeks to contribute to developing innovative and effective bioremediation strategies for heavy metal-contaminated environments, with a strong emphasis on sustainability and environmental friendliness. This study underscores the advantages and drawbacks of bioremediation as a promising technology for mitigating heavy metal pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Luch A (ed) Molecular, clinical and environmental toxicology, vol 3. Environmental Toxicology. Springer Basel, Basel, pp 133–164

    Chapter  Google Scholar 

  2. Deepa CN, Suresha S (2014) Biosorption of lead (II) from aqueous solution and industrial effluent by using leaves of Araucaria cookii: application of response surface methodology. IOSR J Environ Sci Toxicol Food Technol 8:67–79. https://doi.org/10.9790/2402-08716779

    Article  CAS  Google Scholar 

  3. Okolo V, Olowolafe E, Okoduwa SIR (2016) Effects of industrial effluents on soil resources in Challawa Industrial Area, Kano, Nigeria. Global J Environ Sci Manage 5:1–10

    Google Scholar 

  4. Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018:2568038. https://doi.org/10.1155/2018/2568038

    Article  CAS  Google Scholar 

  5. Siddiquee S, Kobun R, Azad S, Saallah S (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol 07.https://doi.org/10.4172/1948-5948.1000243

  6. Naidu R, Bolan N (2008) Chapter 2 contaminant chemistry in soils: key concepts and bioavailability. Chem Bioavailab Terrestr Environ 32. https://doi.org/10.1016/S0166-2481(07)32002-3

  7. Rai PK, Lee SS, Zhang M, Tsang YF, Kim K-H (2019) Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ Int 125:365–385. https://doi.org/10.1016/j.envint.2019.01.067

  8. Yang J, Sun Y, Wang Z, Gong J, Gao J, Tang S, Ma S, Duan Z (2022) Heavy metal pollution in agricultural soils of a typical volcanic area: risk assessment and source appointment. Chemosphere 304:135340. https://doi.org/10.1016/j.chemosphere.2022.135340

  9. Álvarez EA, Mochón MC, Sánchez JCJ, Rodrı́guez MT (2002) Heavy metal extractable forms in sludge from wastewater treatment plants. Chemosphere 47:765–775. https://doi.org/10.1016/S0045-6535(02)00021-8

  10. Chakraborty SC, Qamruzzaman M, Zaman MWU, Alam MM, Hossain MD, Pramanik BK, Nguyen LN, Nghiem LD, Ahmed MF, Zhou JL, Mondal MdIbrahimH, Hossain MA, Johir MAH, Ahmed MB, Sithi JA, Zargar M, Moni MA (2022) Metals in e-waste: Occurrence, fate, impacts and remediation technologies. Process Safety Environ Protect 162:230–252. https://doi.org/10.1016/j.psep.2022.04.011

  11. Anastasiadou K, Christopoulos K, Mousios E, Gidarakos E (2012) Solidification/stabilization of fly and bottom ash from medical waste incineration facility. J Hazard Mater 207–208:165–170. https://doi.org/10.1016/j.jhazmat.2011.05.027

  12. Malik B, Kaur Sandhu K (2023) Occurrence and impact of heavy metals on environment. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.01.317

  13. Molalign Medfu Tarekegn FZS, Ishetu AI (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric 6:1783174. https://doi.org/10.1080/23311932.2020.1783174

    Article  CAS  Google Scholar 

  14. Su C, Jiang L, Zhang W (2014) A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environ Skept Crit 3:24–38

    Google Scholar 

  15. ATSDR (Agency for Toxic Substances and Disease Registry) (2017) ATSDR’s substance priority list. Accessed June 12, 2023

    Google Scholar 

  16. Seaman JC, Arey JS, Bertsch P (2001) Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition. J Environ Qual 30:460–469. https://doi.org/10.2134/jeq2001.302460x

    Article  CAS  Google Scholar 

  17. Ruckart PZ, Ettinger AS, Hanna-Attisha M, Jones N, Davis SI, Breysse PN (2019) The flint water crisis: a coordinated public health emergency response and recovery initiative. J Public Health Manage Pract 25

    Google Scholar 

  18. Ji A, Wang F, Luo W, Yang R, Chen J, Cai T (2011) Lead poisoning in China: a nightmare from industrialisation. Lancet 377:1474–1476. https://doi.org/10.1016/S0140-6736(10)60623-X

    Article  Google Scholar 

  19. Udiba UU, Udofia UU, Akpan ER, Antai EE (2019) Assessment of lead (Pb) uptake and hazard potentials of cassava plant (Manihot esculentus cranz), Dareta Village, Zamfara, Nigeria. Int Res J Public Environ Health 6:115–126. https://doi.org/10.15739/irjpeh.19.014

  20. SkA A, Khan MH, Khandker S, Sarwar AFM, Yasmin N, Faruquee MH, Yasmin R (2014) Blood lead levels and health problems of lead acid battery workers in Bangladesh. Scientific World J 2014:974104. https://doi.org/10.1155/2014/974104

    Article  CAS  Google Scholar 

  21. Heidari P, Sanaeizade S, Mazloomi F (2020) Removal of Nickel, Copper, Lead and Cadmium by New Strains of Sphingomonas melonis E8 and Enterobacter hormaechei WW28. J Appl Biotechnol Rep 7:208–214. https://doi.org/10.30491/jabr.2020.120185

  22. Drexler JW, Brattin WJ (2007) An in vitro procedure for estimation of lead relative bioavailability: with validation. Hum Ecol Risk Assess Int J 13:383–401. https://doi.org/10.1080/10807030701226350

    Article  CAS  Google Scholar 

  23. Marzan LW, Hossain M, Mina SA, Akter Y, Chowdhury AMMA (2017) Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint. The Egyptian J Aquatic Res 43:65–74. https://doi.org/10.1016/j.ejar.2016.11.002

  24. Prabhakaran DC, Bolaños-Benitez V, Sivry Y, Gelabert A, Riotte J, Subramanian S (2019) Mechanistic studies on the bioremediation of Cr(VI) using Sphingopyxis macrogoltabida SUK2c, a Cr(VI) tolerant bacterial isolate. Biochem Eng J 150:107292. https://doi.org/10.1016/j.bej.2019.107292

  25. Gzik A, Kuehling M, Schneider I, Tschochner B (2003) Heavy metal contamination of soils in a mining area in South Africa and its impact on some biotic systems. J Soils Sediments 3:29–34. https://doi.org/10.1007/BF02989466

    Article  CAS  Google Scholar 

  26. Gao Y, Xia J (2011) Chromium contamination accident in China: viewing environment policy of China. Environ Sci Technol 45:8605–8606. https://doi.org/10.1021/es203101f

    Article  CAS  Google Scholar 

  27. Coyte RM, McKinley KL, Jiang S, Karr J, Dwyer GS, Keyworth AJ, Davis CC, Kondash AJ, Vengosh A (2020) Occurrence and distribution of hexavalent chromium in groundwater from North Carolina, USA. Science of the Total Environment 711.https://doi.org/10.1016/j.scitotenv.2019.135135

  28. Adotey EK, Burkutova L, Tastanova L, Bekeshev A, Balanay MP, Sabanov S, Rule AM, Hopke PK, Amouei Torkmahalleh M (2022) Quantification and the sources identification of total and insoluble hexavalent chromium in ambient PM: a case study of Aktobe, Kazakhstan. Chemosphere 307:136057. https://doi.org/10.1016/j.chemosphere.2022.136057

  29. Indian Minerals Yearbook (2019) Part-III: Mineral Reviews, 58th Edition, Chromite, Government of India, Ministry of Mines, Indian Bureau of Mines, August, 2021

    Google Scholar 

  30. Fernández PM, Viñarta SC, Bernal AR, Cruz EL, Figueroa LIC (2018) Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives. Chemosphere 208:139–148. https://doi.org/10.1016/j.chemosphere.2018.05.166

  31. Gautam PK, Gautam R, Banerjee S, Chattopadhyaya M, Pandey J (2016) Heavy metals in the environment: Fate, transport, toxicity and remediation technologies. In: Heavy metals: sources, toxicity and remediation techniques, pp 101–130

    Google Scholar 

  32. Indian Minerals Yearbook (2020) Part- II: Metals & Alloys, 59th Edition, Nickel, Government Of India, Ministry of Mines, Indian Bureau of Mines, August 2021

    Google Scholar 

  33. Yakovlev AS, Plekhanova IO, Kudryashov SV, Aimaletdinov RA (2008) Assessment and regulation of the ecological state of soils in the impact zone of mining and metallurgical enterprises of Norilsk Nickel Company. Eurasian Soil Sci 41:648–659. https://doi.org/10.1134/S1064229308060100

    Article  Google Scholar 

  34. Artiningsih A, Zubair H, Imran AM, Widodo S (2019) Contamination and characteristic of Ni and Cr metal on top soil from Antang landfill, Makassar City, South Sulawesi Province, Indonesia. In: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing

    Google Scholar 

  35. Wuana RA, Okieimen FE, Imborvungu JA (2010) Removal of heavy metals from a contaminated soil using organic chelating acids. Int J Environ Sci Technol 7:485–496. https://doi.org/10.1007/BF03326158

    Article  CAS  Google Scholar 

  36. Agelidis T, Fytianos K, Vasilikiotis G, Jannakoudakis D (1988) Lead removal from wastewater by cementation utilising a fixed bed of iron spheres. Environ Pollut 50:243–251. https://doi.org/10.1016/0269-7491(88)90226-6

  37. Varma AK, Chouhan A, Shankar R, Mondal P, Rathore AK, Thakur LS (2021) Simultaneous removal of lead and copper from synthetic water by electrocoagulation and techno-economic evaluation: optimization through response surface methodology. Int J Eng Sci Technol 13:61–68. https://doi.org/10.4314/ijest.v13i1.9s

    Article  Google Scholar 

  38. Pirsaheb M, Naderi S, Lorestani B, Khosrawi T, Sharafi K (2014) Efficiency of reverse osmosis system in the removal of lead, cadmium, chromium and zinc in feed water of dialysis instruments in kermanshah hospitals. J Mazand Univ Med Sci 24:151–157

    Google Scholar 

  39. Kousi P, Remoundaki E, Hatzikioseyian A, Tsezos M (2007) A study of the operating parameters of a sulphate-reducing fixed-bed reactor for the treatment of metal-bearing wastewater

    Google Scholar 

  40. Chang Y-K, Chang J-E, Lin T-T, Hsu Y-M (2002) Integrated copper-containing wastewater treatment using xanthate process. J Hazard Mater 94:89–99. https://doi.org/10.1016/S0304-3894(02)00060-2

  41. Parasakthi J, Chandrani D, Vijayaraghavan R, Muthusivaramapandian M (2023) Trends in bioremediation of heavy metal contaminations. Environ Eng Res 28:220631. https://doi.org/10.4491/eer.2021.631

    Article  Google Scholar 

  42. Priyadarshanee M, Das S (2021) Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. J Environ Chem Eng 9:104686. https://doi.org/10.1016/j.jece.2020.104686

  43. de Alencar FLS, Navoni JA, do Amaral VS (2017) The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review. Environ Sci Pollut Res 24:16545–16559.https://doi.org/10.1007/s11356-017-9129-8

  44. Jasrotia S, Kansal A, Mehra A (2017) Performance of aquatic plant species for phytoremediation of arsenic-contaminated water. Appl Water Sci 7:889–896. https://doi.org/10.1007/s13201-015-0300-4

    Article  CAS  Google Scholar 

  45. Mir-Tutusaus JA, Baccar R, Caminal G, Sarrà M (2018) Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? a review. Water Res 138:137–151. https://doi.org/10.1016/j.watres.2018.02.056

  46. Kapahi M, Sachdeva S (2019) Bioremediation Options for Heavy Metal Pollution. J Health Pollut 24

    Google Scholar 

  47. Rahman Z, Thomas L (2021) Chemical-Assisted Microbially Mediated Chromium (Cr) (VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr(VI) Removal. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.619766

  48. Alboghobeish H, Tahmourespour A, Doudi M (2014) The study of Nickel Resistant Bacteria (NiRB) isolated from wastewaters polluted with different industrial sources. J Environ Health Sci Eng 12:44. https://doi.org/10.1186/2052-336X-12-44

    Article  CAS  Google Scholar 

  49. Taran M, Sisakhtnezhad S, Azin T (2015) Biological removal of Nickel (II) by sp. KL1 in different conditions: optimization by Taguchi statistical approach. Polish Journal of Chemical Technology 17:29–32. https://doi.org/10.1515/pjct-2015-0046

  50. Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and Nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277. https://doi.org/10.1016/j.jhazmat.2006.12.017

  51. El-Barbary T, Hafez M (2018) Bio Removal Potential of Nickel(II) by Different Bacterial Species

    Google Scholar 

  52. Mardiyono S, Masykuri M, Setyono P (2019) Bioremediation of nickel heavy metals in electroplating industrial liquid waste with Bacillus subtilis. AIP Conf Proc 2202:020084. https://doi.org/10.1063/1.5141697

    Article  CAS  Google Scholar 

  53. Sharma R, Jasrotia T, Umar A, Sharma M, Sharma S, Kumar R, Alkhanjaf AAM, Vats R, Beniwal V, Kumar R, Singh J (2022) Effective removal of Pb(II) and Ni(II) ions by Bacillus cereus and Bacillus pumilus: an experimental and mechanistic approach. Environ Res 212:113337. https://doi.org/10.1016/j.envres.2022.113337

  54. Aslam F, Yasmin A, Sohail S (2020) Bioaccumulation of lead, chromium, and Nickel by bacteria from three different genera isolated from industrial effluent. Int Microbiol 23:253–261. https://doi.org/10.1007/s10123-019-00098-w

    Article  CAS  Google Scholar 

  55. Zhou H, Zhao X, Kumar K, Kunetz T, Zhang Y, Gross M, Wen Z (2021) Removing high concentration of Nickel (II) ions from synthetic wastewater by an indigenous microalgae consortium with a Revolving Algal Biofilm (RAB) system. Algal Res 59:102464. https://doi.org/10.1016/j.algal.2021.102464

  56. Goswami RK, Agrawal K, Shah MP, Verma P (2022) Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Lett Appl Microbiol 75:701–717. https://doi.org/10.1111/lam.13564

    Article  CAS  Google Scholar 

  57. Shamshad I, Khan S, Waqas M, Asma M, Nawab J, Gul N, Raiz A, Li G (2016) Heavy metal uptake capacity of fresh water algae (Oedogonium westti) from aqueous solution: A mesocosm research. Int J Phytoremediation 18:393–398. https://doi.org/10.1080/15226514.2015.1109594

    Article  CAS  Google Scholar 

  58. Abdelrazek M, Abozeid A, Eltholth M, Abouelenien F, El-Midany S, Moustafa N, Mohamed R (2019) Bioremediation of a pesticide and selected heavy metals in wastewater from various sources using a consortium of microalgae and cyanobacteria. Slov Vet Res 56:61–74. https://doi.org/10.26873/SVR-744-2019

  59. Açikel U, Alp T (2009) A study on the inhibition kinetics of bioaccumulation of Cu(II) and Ni(II) ions using Rhizopus delemar. J Hazard Mater 168:1449–1458

    Article  Google Scholar 

  60. Joshi PK, Swarup A, Maheshwari S, Kumar R, Singh N (2011) Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J Microbiol 51:482–487. https://doi.org/10.1007/s12088-011-0110-9

    Article  CAS  Google Scholar 

  61. Long D, Tang X, Cai K, Chen G, Chen L, Duan D, Zhu J, Chen Y (2013) Cr(VI) reduction by a potent novel alkaliphilic halotolerant strain Pseudochrobactrum saccharolyticum LY10. J Hazard Mater 256–257:24–32. https://doi.org/10.1016/j.jhazmat.2013.04.020

  62. Fan J, Onal Okyay T, Frigi Rodrigues D (2014) The synergism of temperature, pH and growth phases on heavy metal biosorption by two environmental isolates. J Hazard Mater 279:236–243. https://doi.org/10.1016/j.jhazmat.2014.07.016

  63. Das S, Mishra J, Das SK, Pandey S, Rao DS, Chakraborty A, Sudarshan M, Das N, Thatoi H (2014) Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96:112–121. https://doi.org/10.1016/j.chemosphere.2013.08.080

  64. Sandana Mala JG, Sujatha D, Rose C (2015) Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiol Res 170:235–241. https://doi.org/10.1016/j.micres.2014.06.001

  65. Ghosh A, Dastidar MG, Sreekrishnan TR (2016) Recent advances in bioremediation of heavy metals and metal complex dyes: review. J Environ Eng 142:C4015003. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000965

    Article  CAS  Google Scholar 

  66. Rath BP, Das S, Mohapatra PK Das, Thatoi H (2014) Optimization of extracellular chromate reductase production by Bacillus amyloliquefaciens (CSB 9) isolated from chromite mine environment. Biocatal Agric Biotechnol 3:35–41. https://doi.org/10.1016/j.bcab.2014.01.004

  67. Bestawy EEl, Helmy S, Hussien H, Fahmy M, Amer R (2013) Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 3:181–192. https://doi.org/10.1007/s13201-012-0071-0

  68. Das C, Naseera K, Ram A, Meena RM, Ramaiah N (2017) Bioremediation of tannery wastewater by a salt-tolerant strain of Chlorella vulgaris. J Appl Phycol 29:235–243. https://doi.org/10.1007/s10811-016-0910-8

    Article  CAS  Google Scholar 

  69. Hackbarth F V, Maass D, de Souza AAU, Vilar VJP, de Souza SMAGU (2016) Removal of hexavalent chromium from electroplating wastewaters using marine macroalga Pelvetia canaliculata as natural electron donor. Chemical Engineering Journal 290:477–489. https://doi.org/10.1016/j.cej.2016.01.070

  70. Sen S, Dutta S, Guhathakurata S, Chakrabarty J, Nandi S, Dutta A (2017) Removal of Cr(VI) using a cyanobacterial consortium and assessment of biofuel production. Int Biodeterior Biodegradation 119:211–224. https://doi.org/10.1016/j.ibiod.2016.10.050

  71. Sen G, Sen S, Thakurta SG, Chakrabarty J, Dutta S (2018) Bioremediation of Cr(VI) using live cyanobacteria: experimentation and kinetic modeling. J Environ Eng 144:4018089. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001425

    Article  Google Scholar 

  72. Majhi P, Nayak S, Samantaray SM (2021) Microalgal Bioremediation of Toxic Hexavalent Chromium: A Review. In: Environmental and Agricultural Microbiology. John Wiley & Sons, Ltd, pp 25–37

    Google Scholar 

  73. García-Hernández MA, Villarreal-Chiu JF, Garza-González MT (2017) Metallophilic fungi research: an alternative for its use in the bioremediation of hexavalent chromium. Int J Environ Sci Technol 14:2023–2038. https://doi.org/10.1007/s13762-017-1348-5

    Article  CAS  Google Scholar 

  74. Damodaran D, Vidya Shetty K, Raj Mohan B (2013) Effect of chelaters on bioaccumulation of Cd (II), Cu (II), Cr (VI), Pb (II) and Zn (II) in Galerina vittiformis from soil. Int Biodeterior Biodegradation 85:182–188. https://doi.org/10.1016/j.ibiod.2013.05.031

  75. Anwer M, Bushra A (2015) Aspergillus niger-a novel heavy metal bio-absorbent and pesticide tolerant fungus. Res J Chem Environ 19

    Google Scholar 

  76. Sharma S, Malaviya P (2016) Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecol Eng 91:419–425. https://doi.org/10.1016/j.ecoleng.2016.03.005

  77. M. Jayanthi, D. Kanchana, P. Saranraj, D. Sujitha (2014) Bioadsorption of Chromium by Penicillium chrysogenum and Aspergillus niger Isolated from Tannery Effluent. International Journal of Microbiological Research

    Google Scholar 

  78. Mohapatra RK, Parhi PK, Pandey S, Bindhani BK, Thatoi H, Panda CR (2019) Active and passive biosorption of Pb(II)using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: kinetics and isotherm studies. J Environ Manage 247:121–134. https://doi.org/10.1016/j.jenvman.2019.06.073

  79. Ma Y, Wang P, Wang C, Zhang S, Cheng S (2015) Isolation and characterization of Pb-resistant strains and the removal of Pb(II). Fresenius Environ Bull 24:1150–1157

    Google Scholar 

  80. Soeprobowati T, Hariyati R (2012) The Potential Used of Microalgae for Heavy Metals Remediation

    Google Scholar 

  81. El-Sayed MT (2013) Removal of lead(II) by Saccharomyces cerevisiae AUMC 3875. Ann Microbiol 63:1459–1470. https://doi.org/10.1007/s13213-013-0609-x

    Article  CAS  Google Scholar 

  82. Zeng G, Li N, Huang D, Lai C, Zhao M, Huang C, Wei Z, Xu P, Zhang C, Cheng M (2015) The stability of Pb species during the Pb removal process by growing cells of Phanerochaete chrysosporium. Appl Microbiol Biotechnol 99:3685–3693. https://doi.org/10.1007/s00253-014-6275-5

  83. Ye B, Luo Y, He J, Sun L, Long B, Liu Q, Yuan X, Dai P, Shi J (2018) Investigation of lead bioimmobilization and transformation by Penicillium oxalicum SL2. Bioresour Technol 264:206–210. https://doi.org/10.1016/j.biortech.2018.05.066

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Padma, S., Ghosh, S., Srinivas, B., Ghanta, K.C., Dutta, S. (2024). Bioremediation of Heavy Metals—Its Pros and Cons. In: Kumar, N. (eds) Heavy Metal Remediation. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-53688-5_10

Download citation

Publish with us

Policies and ethics