Skip to main content

Heterodyne and Direct Detection Wind Lidar Developed at ONERA

  • Conference paper
  • First Online:
Space-based Lidar Remote Sensing Techniques and Emerging Technologies (LIDAR 2023)

Abstract

In this paper, we present the two wind lidar architectures developed at ONERA: the heterodyne lidar which analyzes the backscattering of particles and the direct detection lidar using a QMZ which analyzes the backscattering of molecules. In both cases, solutions have been developed to be able to embark them on an airplane: fiber laser, robust receiver, robust general architecture. Both technologies could provide interesting comparative measurements for AEOLUS calibration/validation campaigns: the heterodyne configuration allows precise measurements on the lower part of the atmosphere while the QMZ configuration allows reaching up to at an altitude of 20 km. In addition, regarding the developments made for molecular lidar, the UV fiber laser and the monolithic QMZ receiver could be excellent solutions for the next generation of Aeolus to reduce costs, improve data quality and lidar durability.

The project 101101974—UP Wing is supported by the Clean Aviation Joint Undertaking and its members. Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Clean Aviation Joint Undertaking. Neither the European Union nor the granting authority can be held responsible for them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soreide DC, Bogue RK, Ehernberger LJ, Bagley HR (1996) Coherent lidar turbulence for gust load alleviation. In: Optical instruments for weather forecasting, vol 2832, pp 61–75

    Google Scholar 

  2. Fournier H , Massioni P, Tu Pham M, Bako L, Vernay R, Colombo M (2022) Robust gust load alleviation of flexible aircraft equipped with lidar. J Guid Control Dyn 45:58–72

    Google Scholar 

  3. Cavaliere D, Fezans N, Kiehn D, Quero D, Vrancken P (2022) Gust load control design challenge including lidar wind measurements and based on the common research model. In: AIAA SCITECH 2022 forum

    Google Scholar 

  4. dos Reis A, Vuillemin P, Quero D, Poussot-Vassal C (2022) Observer-based gust load alleviation via reduced-order models. IFAC-Papers OnLine 55:25–30

    Article  Google Scholar 

  5. Augere B, Besson C, Fleury D, Goular D, Planchat C, Valla M (2016) 1.5 \(\mu \)m lidar anemometer for true air speed, angle of sideslip, and angle of attack measurements on-board Piaggio P180 aircraft. Meas Sci Technol 27:054002

    Google Scholar 

  6. STRGANAC T (1979) Wind study for high altitude platform design. In: 3rd Lighter-than-air systems technology conference

    Google Scholar 

  7. Bruneau D, Pelon J (2021) A new lidar design for operational atmospheric wind and cloud/aerosol survey from space. Atmos Meas Tech 14:4375–4402

    Article  Google Scholar 

  8. Rennie M, Stoffelen A, Khaykin S, Osprey S, Wright C, Banyard T, Straume AG, Reitebuch O, Krisch I, Parrinello T, Tommaso and others (2021) Demonstrated aeolus benefits in atmospheric sciences. In: 2021 IEEE international geoscience and remote sensing symposium IGARSS, pp 763–766

    Google Scholar 

  9. Witschas B, Lemmerz C, Geiß A, Lux O, Marksteiner U, Rahm S, Reitebuch O, Weiler F (2020) First validation of Aeolus wind observations by airborne Doppler wind lidar measurements. Atmos Meas Techn 13:2381–2396

    Google Scholar 

  10. Bedka KM, Nehrir AR, Kavaya M, Barton-Grimley R, Beaubien M, Carroll B, Collins J, Cooney J, Emmitt GD, Greco S, others (2021) Airborne lidar observations of wind, water vapor, and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test flight campaign. Atmos Meas Tech 14:4305–4334

    Google Scholar 

  11. Tucker SC (2018) OAWL: a high-heritage US doppler wind lidar for next-generation space-based wind and aerosol observations. In: 35th Space symposium, Colorado

    Google Scholar 

  12. Lux O, Lemmerz C, Weiler F, Marksteiner U, Witschas B, Rahm S, Geiß A, Reitebuch O (2020) Intercomparison of wind observations from the European Space Agency’s Aeolus satellite mission and the ALADIN Airborne Demonstrator. Atmos Meas Tech 13:2075–2097

    Article  Google Scholar 

  13. Ratynski M, Khaykin S, Hauchecorne A, Wing R, Cammas J-P, Hello Y, Keckhut P (2023) Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence. Atmos Meas Tech 16:997–1016

    Article  Google Scholar 

  14. Beranek RG, Bilbro JW, Fitzjarrald DE, Jones WD, Keller VW, Perrine BS (1989) Laser Atmospheric Wind Sounder (LAWS). In: Laser applications in meteorology and earth and atmospheric remote sensing, vol 1062, pp 234–248

    Google Scholar 

  15. Baker WE, Emmitt GD, Robertson F, Atlas RM, Molinari JE, Bowdle DA, Paegle J, Hardesty RM, Menzies RT, Krishnamurti TN, Brown RA, Post MJ, Anderson JR, Lorenc AC, McElroy J (1995) Lidar-measured winds from space: a key component for weather and climate prediction. Bull Am Meteor Soc 76:869–888

    Article  Google Scholar 

  16. Dabas A, Denneulin ML, Flamant P, Loth C, Garnier A, Dolfi-Bouteyre A (2008) Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects. Tellus A Dyn Meteorol Oceanogr 60:206–215

    Article  Google Scholar 

  17. Zhai X, Marksteiner U, Weiler F, Lemmerz C, Lux O, Witschas R, Reitebuch O (2020) Rayleigh wind retrieval for the ALADIN airborne demonstrator of the Aeolus mission using simulated response calibration. Atmos Meas Tech 13:445–465

    Article  Google Scholar 

  18. Souprayen C, Garnier A, Hertzog A, Hauchecorne A, Porteneuve J (1999) Rayleigh-Mie Doppler wind lidar for atmospheric measurements i instrumental setup, validation, and first climatological results and II Mie scattering effect, theory, and calibration. Appl Opt 38:2410–2421

    Article  Google Scholar 

  19. Witschas B, Lemmerz C, Geiß A, Lux O, Marksteiner U, Rahm S, Reitebuch O, Weiler F (2020) First validation of Aeolus wind observations by airborne Doppler wind lidar measurements. Atmos Meas Tech 13:2381–2396

    Article  Google Scholar 

  20. Augere B, Valla M, Durécu A, Dolfi-Bouteyre A, Goular D, Gustave F, Planchat C, Fleury D, Huet T, Besson C (2019) Three-dimensional wind measurements with the fibered airborne coherent doppler wind lidar LIVE. Atmosphere 10:549

    Google Scholar 

  21. Bruneau D (2001) Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar. Appl Opt 40:391–399

    Article  Google Scholar 

  22. Tucker SC, Weimer CS, Baidar S, Hardesty RM (2018) The optical autocovariance wind lidar part I: OAWL instrument development and demonstration. J Atmos Oceanic Tech 35:2079–2097

    Article  Google Scholar 

  23. @onlineAdress, https://cordis.europa.eu/project/id/101101974

  24. Cariou JP, Augere B, Goular D, Schlotterbeck JP, Lacondamine X (2005) All-fiber 1.5 \(\upmu \)m CW coherent laser anemometer DALHEC. In: Helicopter flight test analysis 13th, 13th Coherent laser radar conference(Kamakura)

    Google Scholar 

  25. Michel DT, Dolfi-Bouteyre A, Goular D, Augère B, Planchat C, Fleury D, Lombard L, Valla M, Besson C (2020) Onboard wake vortex localization with a coherent 1.5 \(\upmu \)m Doppler LIDAR for aircraft in formation flight configuration. Opt Express 28:14374–14385

    Article  Google Scholar 

  26. Smalikho I (2003) Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar. J Atmos Ocean Technol 20:276–291

    Article  Google Scholar 

  27. Pouillaude J, Pichon P, Delen X, Georges P, Lombard L (2023) Amplification d’impulsions monofréquences et nanosecondes dans des fibres copées Yb courtes: 1030 nm ou 1064 nm?” Journée nationale d’optique guidée

    Google Scholar 

  28. Boulant T, Valla M, Mariscal J-F, Rouanet N, Michel D-T (2023) Robust molecular wind lidar with quadri Mach-Zehnder interferometer and UV fiber laser for calibration/validation and future generation of Aeolus. In: Proceedings of the SPIE 12730, Remote sensing of clouds and the atmosphere XXVIII, 127300M

    Google Scholar 

  29. Bruneau D, Pelon J, Blouzon F, Spatazza J, Genau P, Buchholtz G, Amarouche N, Abchiche A, Aouji O (2015) 355-nm high spectral resolution airborne lidar LNG: system description and first results. Appl Opt 54:8776–8785

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tomline Michel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Michel, D.T. et al. (2024). Heterodyne and Direct Detection Wind Lidar Developed at ONERA. In: Singh, U.N., Tzeremes, G., Refaat, T.F., Ribes Pleguezuelo, P. (eds) Space-based Lidar Remote Sensing Techniques and Emerging Technologies. LIDAR 2023. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-53618-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53618-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53617-5

  • Online ISBN: 978-3-031-53618-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics