Skip to main content

Data-Driven Pathways to Sustainable Energy Solutions

  • Conference paper
  • First Online:
Unified Vision for a Sustainable Future (CEGS 2024)

Abstract

In the rapidly evolving world of the energy sector, harnessing the power of neural networks and machine learning becomes crucial. This chapter deals with the intricate dimensions of datasets, delineating their types, structures, and classifications that are particularly relevant to energy-related applications. A meticulous exploration of data processing techniques, emphasizing preparation, transformation, labeling, and augmentation, is presented. Additionally, a comparative analysis of optimization algorithms clarifies their role in refining energy-focused models. The complexities, computation times, and accuracies of these optimizers are highlighted. Furthermore, the importance of hyperparameters, their optimal configurations, and the significance of adept tuning are underscored. Serving as a comprehensive guide, this chapter aims to bridge the knowledge gap of stakeholders in the energy domain, providing actionable insights into best practices for data-driven decision-making processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagan, M.T., Demuth, H.B., Beale, M.H., JesĂºs, O.D.: Neural Network Design. Martin Hagan (2014)

    Google Scholar 

  2. Ramanathan, R., Ravindran, A.R., Mathirajan, M.: Multi-criteria decision making: an overview and a comparative discussion. In: Big Data Analytics Using Multiple Criteria Decision-Making Models. CRC Press (2017)

    Chapter  Google Scholar 

  3. Danish, M.S.S., Senjyu, T., Sabory, N.R., Danish, S.M.S., Ludin, G.A., Noorzad, A.S., Yona, A.: Afghanistan’s aspirations for energy independence: water resources and hydropower energy. Renew. Energy. 113, 1276–1287 (2017). https://doi.org/10.1016/j.renene.2017.06.090

    Article  Google Scholar 

  4. Danish, M.S.S., Senjyu, T.: Shaping the future of sustainable energy through AI-enabled circular economy policies. Circ. Econ. 2(2), 100040 (2023)

    Google Scholar 

  5. Danish, M.S.S., Elsayed, M.E.L., Ahmadi, M., Senjyu, T., Karimy, H., Zaheb, H.: A strategic-integrated approach for sustainable energy deployment. Energy Rep. 6, 40–44 (2020). https://doi.org/10.1016/j.egyr.2019.11.039

    Article  Google Scholar 

  6. Danish, M.S.S., Senjyu, T., Ibrahimi, A.M., Ahmadi, M., Howlader, A.M.: A managed framework for energy-efficient building. J. Build. Eng. 21, 120–128 (2019). https://doi.org/10.1016/j.jobe.2018.10.013

    Article  Google Scholar 

  7. Ahmad, T., Ali, S., Basit, A.: Distributed renewable energy systems for resilient and sustainable development of remote and vulnerable communities. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 380, 20210143 (2022). https://doi.org/10.1098/rsta.2021.0143

    Article  Google Scholar 

  8. Röder, M., Mohr, A., Liu, Y.: Sustainable bioenergy solutions to enable development in low- and middle-income countries beyond technology and energy access. Biomass Bioenergy. 143, 105876 (2020). https://doi.org/10.1016/j.biombioe.2020.105876

    Article  Google Scholar 

  9. Hofbauer, L., McDowall, W., Pye, S.: Challenges and opportunities for energy system modelling to foster multi-level governance of energy transitions. Renew. Sust. Energ. Rev. 161, 112330 (2022). https://doi.org/10.1016/j.rser.2022.112330

    Article  Google Scholar 

  10. Steg, L., Perlaviciute, G., Sovacool, B.K., Bonaiuto, M., Diekmann, A., Filippini, M., Hindriks, F., Bergstad, C.J., Matthies, E., Matti, S., Mulder, M., Nilsson, A., Pahl, S., Roggenkamp, M., Schuitema, G., Stern, P.C., Tavoni, M., Thøgersen, J., Woerdman, E.: A research agenda to better understand the human dimensions of energy transitions. Front. Psychol. 12, 672776 (2021)

    Article  Google Scholar 

  11. Cook, D., DavĂ­Ă°sdĂ³ttir, B., GunnarsdĂ³ttir, I.: A conceptual exploration of how the pursuit of sustainable energy development is implicit in the genuine Progress indicator. Energies. 15, 2129 (2022). https://doi.org/10.3390/en15062129

    Article  Google Scholar 

  12. Husaini, D.H., Lean, H.H., Puah, C.-H., Affizzah, A.M.D.: Energy subsidy reform and energy sustainability in Malaysia. Econ. Anal. Policy. 77, 913–927 (2023). https://doi.org/10.1016/j.eap.2022.12.013

    Article  Google Scholar 

  13. Rodic-Wiersma, L.: Guidelines for national waste management strategies moving from challenges to opportunities. United Nations Environment Programme (UNEP), Geneve (2013)

    Google Scholar 

  14. Project Management Institute: A Guide to the Project Management Body of Knowledge (PMBOK Guide). Project Management Institute (2017)

    Google Scholar 

  15. Danish, M.S.S., Senjyu, T.: AI-enabled energy policy for a sustainable future. Sustainability. 15(9), 7643 (2023)

    Article  Google Scholar 

  16. Danish, M.S.S.: AI in energy: overcoming unforeseen obstacles. AI. 4, 406–425 (2023). https://doi.org/10.3390/ai4020022

    Article  Google Scholar 

  17. Drachman, D.A.: Do we have brain to spare? Neurology. 64, 2004–2005 (2005). https://doi.org/10.1212/01.WNL.0000166914.38327.BB

    Article  Google Scholar 

  18. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 52, 99–115 (1990). https://doi.org/10.1007/BF02459570

    Article  Google Scholar 

  19. Omitaomu, O.A., Niu, H.: Artificial intelligence techniques in smart grid: a survey. Smart Cities. 4, 548–568 (2021). https://doi.org/10.3390/smartcities4020029

    Article  Google Scholar 

  20. Shehab, M., Abualigah, L., Omari, M., Shambour, M.K.Y., Alshinwan, M., Abuaddous, H.Y., Khasawneh, A.M.: Chapter 8: Artificial neural networks for engineering applications: a review. In: Elsheikh, A.H., Abd Elaziz, M.E. (eds.) Artificial Neural Networks for Renewable Energy Systems and Real-World Applications, pp. 189–206. Academic Press, Cambridge (2022). https://doi.org/10.1016/B978-0-12-820793-2.00003-3

    Chapter  Google Scholar 

  21. Alanis, A.Y., Arana-Daniel, N., Lopez-Franco, C.: Artificial Neural Networks for Engineering Applications. Academic Press, St. Louis (2019)

    Google Scholar 

  22. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  23. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2016)

    Google Scholar 

  24. De Wilde, P.: Neural Network Models. Springer, London (1997). https://doi.org/10.1007/978-1-84628-614-8

    Book  Google Scholar 

  25. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    Google Scholar 

  26. Loy, J.: Neural Network Projects with Python: the Ultimate Guide to Using Python to Explore the True Power of Neural Networks Through Six Projects. Packt Publishing, Birmingham (2019)

    Google Scholar 

  27. de Wilde, P.: Neural Network Models: Theory and Projects, 2nd edn. Springer, London; New York (1997)

    Book  Google Scholar 

  28. Haykin, S.: Neural Networks and Learning Machines. Pearson, New York (2008)

    Google Scholar 

  29. Danish, M.S.S., Nazari, Z., Senjyu, T.: AI-coherent data-driven forecasting model for a combined cycle power plant. Energy Convers. Manag. 286, 117063 (2023). https://doi.org/10.1016/j.enconman.2023.117063

    Article  Google Scholar 

  30. Jia, D., Yang, L., Gao, X., Li, K.: Assessment of a new solar radiation nowcasting method based on FY-4A satellite imagery, the McClear model and SHapley additive exPlanations (SHAP). Remote Sens. 15, 2245 (2023). https://doi.org/10.3390/rs15092245

    Article  Google Scholar 

  31. Hissou, H., Benkirane, S., Guezzaz, A., Azrour, M., Beni-Hssane, A.: A novel machine learning approach for solar radiation estimation. Sustain. For. 15, 10609 (2023). https://doi.org/10.3390/su151310609

    Article  Google Scholar 

  32. Castillo-Rojas, W., Medina Quispe, F., HernĂ¡ndez, C.: Photovoltaic energy forecast using weather data through a hybrid model of recurrent and shallow neural networks. Energies. 16, 5093 (2023). https://doi.org/10.3390/en16135093

    Article  Google Scholar 

  33. Bentsen, L.Ă˜., Warakagoda, N.D., Stenbro, R., Engelstad, P.: Probabilistic Wind Park power prediction using Bayesian deep learning and generative adversarial networks. J. Phys. Conf. Ser. 2362, 012005 (2022). https://doi.org/10.1088/1742-6596/2362/1/012005

    Article  Google Scholar 

  34. Adli, H.K., Husin, K.A.K., Hanafiah, N.H.M., Remli, M.A., Ernawan, F., Wirawan, P.W.: Forecasting and analysis of solar power output from integrated solar energy and IoT system. In: 2021 5th International Conference on Informatics and Computational Sciences (ICICoS), pp. 222–226. IEEE, Semarang (2021). https://doi.org/10.1109/ICICoS53627.2021.9651831

    Chapter  Google Scholar 

  35. Nielson, J., Bhaganagar, K., Meka, R., Alaeddini, A.: Using atmospheric inputs for artificial neural networks to improve wind turbine power prediction. Energy. 190, 116273 (2020). https://doi.org/10.1016/j.energy.2019.116273

    Article  Google Scholar 

  36. Chen, K.-S., Lin, K.-P., Yan, J.-X., Hsieh, W.-L.: Renewable power output forecasting using least-squares support vector regression and Google data. Sustain. For. 11, 3009 (2019). https://doi.org/10.3390/su11113009

    Article  Google Scholar 

  37. Qing, X., Niu, Y.: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy. 148, 461–468 (2018). https://doi.org/10.1016/j.energy.2018.01.177

    Article  Google Scholar 

  38. Sivaneasan, B., Yu, C.Y., Goh, K.P.: Solar forecasting using ANN with fuzzy logic pre-processing. Energy Procedia. 143, 727–732 (2017). https://doi.org/10.1016/j.egypro.2017.12.753

    Article  Google Scholar 

  39. Gutierrez-Corea, F.-V., Manso-Callejo, M.-A., Moreno-Regidor, M.-P., Manrique-Sancho, M.-T.: Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations. Sol. Energy. 134, 119–131 (2016). https://doi.org/10.1016/j.solener.2016.04.020

    Article  Google Scholar 

  40. Abuella, M., Chowdhury, B.: Solar power forecasting using artificial neural networks. In: 2015 North American Power Symposium (NAPS), pp. 1–5. IEEE, Charlotte (2015). https://doi.org/10.1109/NAPS.2015.7335176

    Chapter  Google Scholar 

  41. Dahmani, K., Dizene, R., Notton, G., Paoli, C., Voyant, C., Nivet, M.L.: Estimation of 5-min time-step data of tilted solar global irradiation using ANN (artificial neural network) model. Energy. 70, 374–381 (2014). https://doi.org/10.1016/j.energy.2014.04.011

    Article  Google Scholar 

  42. Marquez, R., Pedro, H.T.C., Coimbra, C.F.M.: Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs. Sol. Energy. 92, 176–188 (2013). https://doi.org/10.1016/j.solener.2013.02.023

    Article  Google Scholar 

  43. Tabari, H., Kisi, O., Ezani, A., Hosseinzadeh Talaee, P.: SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. J. Hydrol. 444–445, 78–89 (2012). https://doi.org/10.1016/j.jhydrol.2012.04.007

    Article  Google Scholar 

  44. De Mauro, A., Greco, M., Grimaldi, M.: What is big data? A consensual definition and a review of key research topics. AIP Conf. Proc. 1644, 97–104 (2015). https://doi.org/10.1063/1.4907823

    Article  Google Scholar 

  45. Ball, G.H.: Data analysis in the social sciences: what about the details? In: Proceedings of the November 30--December 1, 1965, fall joint computer conference, part I, pp. 533–559. Association for Computing Machinery, New York (1965). https://doi.org/10.1145/1463891.1463950

  46. Pöppelbaum, J., Chadha, G.S., Schwung, A.: Contrastive learning based self-supervised time-series analysis. Appl. Soft Comput. 117, 108397 (2022). https://doi.org/10.1016/j.asoc.2021.108397

    Article  Google Scholar 

  47. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM. 51, 107–113 (2008). https://doi.org/10.1145/1327452.1327492

    Article  Google Scholar 

  48. Shrestha, Y.R., Krishna, V., von Krogh, G.: Augmenting organizational decision-making with deep learning algorithms: principles, promises, and challenges. J. Bus. Res. 123, 588–603 (2021). https://doi.org/10.1016/j.jbusres.2020.09.068

    Article  Google Scholar 

  49. Bera, S., Shrivastava, V.K.: Analysis of various optimizers on deep convolutional neural network model in the application of hyperspectral remote sensing image classification. Int. J. Remote Sens. 41, 2664–2683 (2020). https://doi.org/10.1080/01431161.2019.1694725

    Article  Google Scholar 

  50. Oh, S.-K., Kim, W.-D., Pedrycz, W., Joo, S.-C.: Design of K-means clustering-based polynomial radial basis function neural networks (pRBF NNs) realized with the aid of particle swarm optimization and differential evolution. Neurocomputing. 78, 121–132 (2012). https://doi.org/10.1016/j.neucom.2011.06.031

    Article  Google Scholar 

  51. Vani, S., Rao, T.V.M.: An experimental approach towards the performance assessment of various optimizers on convolutional neural network. In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 331–336 (2019), https://doi.org/10.1109/ICOEI.2019.8862686

  52. Cochocki, A., Unbehauen, R.: Neural Networks for Optimization and Signal Processing. Wiley, New York (1993)

    Google Scholar 

  53. Mohapatra, R., Saha, S., Coello, C.A.C., Bhattacharya, A., Dhavala, S.S., Saha, S.: AdaSwarm: augmenting gradient-based optimizers in deep learning with swarm intelligence. IEEE Trans. Emerg. Top. Comput. Intell. 6, 329–340 (2022). https://doi.org/10.1109/TETCI.2021.3083428

    Article  Google Scholar 

  54. Gueorguieva, N., Valova, I., Klusek, D.: Solving large scale classification problems with stochastic based optimization. Procedia Comput. Sci. 168, 26–33 (2020). https://doi.org/10.1016/j.procs.2020.02.247

    Article  Google Scholar 

  55. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Let a biogeography-based optimizer train your multi-layer perceptron. Inf. Sci. 269, 188–209 (2014). https://doi.org/10.1016/j.ins.2014.01.038

    Article  MathSciNet  Google Scholar 

  56. Fulginei, F.R., Salvini, A., Parodi, M.: Learning optimization of neural networks used for MIMO applications based on multivariate functions decomposition. Inverse Probl. Sci. Eng. 20, 29–39 (2012). https://doi.org/10.1080/17415977.2011.629047

    Article  MathSciNet  Google Scholar 

  57. Abdolrasol, M.G.M., Hussain, S.M.S., Ustun, T.S., Sarker, M.R., Hannan, M.A., Mohamed, R., Ali, J.A., Mekhilef, S., Milad, A.: Artificial neural networks based optimization techniques: a review. Electronics. 10, 2689 (2021). https://doi.org/10.3390/electronics10212689

    Article  Google Scholar 

  58. Danish, M.S.S.: A framework for modeling and optimization of data-driven energy systems using machine learning. IEEE Trans. Artif. Intell. 1–10 (2023). https://doi.org/10.1109/TAI.2023.3322395

  59. Danish, M.S.S.: AI and expert insights for sustainable energy future. Energies. 16, 3309 (2023). https://doi.org/10.3390/en16083309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Sayed Shah Danish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Danish, M.S.S. et al. (2024). Data-Driven Pathways to Sustainable Energy Solutions. In: Danish, M.S.S. (eds) Unified Vision for a Sustainable Future. CEGS 2024. Springer, Cham. https://doi.org/10.1007/978-3-031-53574-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53574-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53573-4

  • Online ISBN: 978-3-031-53574-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics