Skip to main content

A Comprehensive Review of Brain Diseases Classification Using Deep Learning Techniques

  • Conference paper
  • First Online:
Advances in Emerging Information and Communication Technology (ICIEICT 2023)

Abstract

Brains are complex. This organ stores our knowledge, interprets our senses, moves our bodies, and governs our thoughts, emotions, memories, vision, touch, respiration, hunger, body temperature, motor skills, and every other bodily action. To help doctors, we studied and reviewed the most frequent and difficult disorders. The study will focus on using artificial intelligence to diagnose epilepsy, dementia, Parkinson’s disease, and brain tumors. In this paper, we demonstrated how AI approaches can be used in the diagnostic process for a number of prevalent brain diseases and disorders. These include brain tumors, epilepsy, and dementia, particularly the Alzheimer’s disease stage and Parkinson’s disease. The most common dataset sources used in brain research, brain imaging modalities, and neuropsychological tests are then described and separated into open-access and private dataset categories. The most popular performance measures are discussed at the end of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.A. Buffalo, J.A. Movshon, R.H. Wurtz, From basic brain research to treating human brain disorders. Proc. Natl. Acad. Sci. U S A 116(52), 26167–26172 (2019)

    Article  Google Scholar 

  2. T. Kaufmann, D. van der Meer, N.T. Doan, E. Schwarz, M.J. Lund, I. Agartz, L.T. Westlye, Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat. Neurosci. (Nature Publishing Group US New York) 22(10), 1617–1623 (2019)

    Google Scholar 

  3. Genetic Brain Disorders: Effective Health Care Program, https://effectivehealthcare.ahrq.gov/health-topics/genetic-brain-disorders, last accessed 30/8/2023

  4. Brain diseases, https://www.americanbrainfoundation.org/diseases/, last accessed 30/8/2023

  5. Burden of Neurological Conditions, https://www.paho.org/en/enlace/burden-neurological-conditions, last accessed 30/8/2023

  6. Essence of AI, https://www.cambridge.org/core/books/abs/cambridge-handbook-of-artificial-intelligence/essence-of-ai/31462D53C85ECABB986BE49C35FEFA6B, last accessed 30/8/2023

  7. Artificial Intelligence, https://www.cambridge.org/core/books/abs/cambridge-handbook-of-intelligence/artificial-intelligence/B994B0D29512087BF53979CA9EABC9AB, last accessed 30/8/2023

  8. A. Srivastava, The Application & Impact of Artificial Intelligence (AI) On E-Commerce, in Contemporary Issues in Commerce and Management, (2021)

    Google Scholar 

  9. R. Sharma, Artificial intelligence in agriculture: a review, in 5th International Conference on Intelligent Computing and Control Systems (ICICCS), (IEEE, Madurai, India, 2021), pp. 937–942

    Google Scholar 

  10. L. Chen, P. Chen, Z. Lin, Artificial intelligence in education: A review. IEEE Access 8, 75264–75278 (2020)

    Article  Google Scholar 

  11. S. Douzi, F.A. AlShahwan, M. Lemoudden, B. El Ouahidi, Hybrid email spam detection model using artificial intelligence. Int. J. Mach. Learn. Comput. 10(2), 1–7 (2020)

    Google Scholar 

  12. P. Kaur, K. Krishan, S.K. Sharma, T. Kanchan, Facial-recognition algorithms: A literature review. Med. Sci. Law (SAGE Publications Sage UK: London, England) 60(2), 131–139 (2020)

    Article  Google Scholar 

  13. H.H.N. Alrashedy, A.F. Almansour, D.M. Ibrahim, M.A.A. Hammoudeh, BrainGAN: brain MRI image generation and classification framework using GAN architectures and CNN models. Sensors 22(11), 4297 (2022)

    Article  Google Scholar 

  14. S.S. Alrumiah, N. Alrebdi, D.M. Ibrahim, Augmenting healthy brain magnetic resonance images using generative adversarial networks. PeerJ Comput. Sci. 9, e1318 (2023)

    Article  Google Scholar 

  15. A. Aouto, T. Huynh-The, J.M. Lee, D.S. Kim, Pose-Based Identification Using Deep Learning for Military Surveillance Systems, in 2019 International Conference on Information and Communication Technology Convergence (ICTC), (IEEE, Jeju, Korea (South), 2019), pp. 626–629

    Chapter  Google Scholar 

  16. P. Sweetser, J. Wiles, Current AI in games: A review. Aust. J. Intell. Inf. Process. Syst. (Australian National University, College of Engineering and Computer Science) 8(1), 24–42 (2002)

    Google Scholar 

  17. G. Rong, A. Mendez, E.B. Assi, B. Zhao, M. Sawan, Artificial intelligence in healthcare: review and prediction case studies. Engineering (Elsevier) 6(3), 291–301 (2020)

    Google Scholar 

  18. T.J. Saleem, M.A. Chishti, Exploring the applications of machine learning in healthcare. Int. J. Sensors Wirel. Commun. Control (Bentham Science Publishers) 10(4), 458–472 (2020)

    Article  Google Scholar 

  19. P.-H.C. Chen, Y. Liu, L. Peng, How to develop machine learning models for healthcare. Nat. Mater. (Nature Publishing Group UK London) 18(5), 410–414 (2019)

    Google Scholar 

  20. H. Wang, C. Ma, L. Zhou, A brief review of machine learning and its application, in 2009 International Conference on Information Engineering and Computer Science, (IEEE, Wuhan, China, 2009), pp. 1–4

    Google Scholar 

  21. O.I. Abiodun, A. Jantan, A.E. Omolara, K.V. Dada, N.A. Mohamed, H. Arshad, State-of-the-art in artificial neural network applications: A survey. Heliyon (Elsevier) 4(11), e00938 (2018)

    Article  Google Scholar 

  22. V.S. Dave, K. Dutta, Neural network based models for software effort estimation: a review. Artif. Intell. Rev. (Springer) 42(2), 295–307 (2014)

    Article  Google Scholar 

  23. K. Saravanan, S. Sasithra, Review on classification based on artificial neural networks. Int. J. Ambient Syst. Appl. 2(4), 11–18 (2014)

    Google Scholar 

  24. C. Cao, F. Liu, H. Tan, D. Song, W. Shu, W. Li, Z. Xie, Deep learning and its applications in biomedicine. Genom. Proteom. Bioinform. (Elsevier) 16(1), 17–32 (2018)

    Article  Google Scholar 

  25. H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, T. Blaschke, The rise of deep learning in drug discovery. Drug Discov. Today. (Elsevier) 23(6), 1241–1250 (2018)

    Article  Google Scholar 

  26. P.H. Liu, S.F. Su, M.C. Chen, C.C. Hsiao, Deep learning and its application to general image classification, in 2015 International conference on informative and cybernetics for computational social systems (ICCSS), (IEEE, Chengdu, China, 2015), pp. 7–10

    Chapter  Google Scholar 

  27. A. Hashmi, O. Barukab, Dementia classification using deep reinforcement learning for early diagnosis. Appl. Sci. (MDPI) 13(3), 1464 (2023)

    Article  Google Scholar 

  28. A.S. Lundervold, A. Lundervold, An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik. (Elsevier) 29(2), 102–127 (2019)

    Article  Google Scholar 

  29. T. Dissanayake, T. Fernando, S. Denman, S. Sridharan, C. Fookes, Deep learning for patient-independent epileptic seizure prediction using scalp EEG signals. IEEE Sens. J (IEEE) 21(7), 9377–9388 (2021)

    Article  Google Scholar 

  30. Z.B. Tariq, A. Iyengar, L. Marcuse, H. Su, B. Yener, Patient-specific seizure prediction using single seizure electroencephalography recording, in AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action, (Springer, 2022), pp. 295–308

    Chapter  Google Scholar 

  31. Z. Zhang, X. Li, F. Geng, K. Huang, A semi-supervised few-shot learning model for epileptic seizure detection, in 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), (IEEE, Mexico, 2021), pp. 600–603

    Google Scholar 

  32. B. Lu, H. Lu, G. Zhou, X. Yin, X. Gu, T. Ni, Multifeature metric learning based on enhanced equidistance embedding for electroencephalogram recognition of epilepsy. Wirel. Commun. Mob. Comput. (Hindawi Limited), 1–11 (2021)

    Google Scholar 

  33. I. Ullah, M. Hussain, H. Aboalsamh, An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Syst. Appl. (Elsevier) 107, 61–71 (2018)

    Article  Google Scholar 

  34. S. Hu, J. Liu, R. Yang, Y.N. Wang, A. Wang, K. Li, C. Yang, Exploring the applicability of transfer learning and feature engineering in epilepsy prediction using hybrid transformer model. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 1321–1332 (2023)

    Article  Google Scholar 

  35. H. Daoud, M.A. Bayoumi, Efficient epileptic seizure prediction based on deep learning: IEEE transactions on biomedical circuits and systems. IEEE 13(5), 804–813 (2019)

    Google Scholar 

  36. H.G. Daoud, A.M. Abdelhameed, M. Bayoumi, Automatic epileptic seizure detection based on empirical mode decomposition and deep neural network, in 14th International Colloquium on Signal Processing & Its Applications (CSPA), (IEEE, Penang, Malaysia, 2018), pp. 182–186

    Google Scholar 

  37. A.M. Abdelhameed, M. Bayoumi, Semi-supervised EEG signals classification system for epileptic seizure detection. IEEE Signal Process. Lett. (IEEE) 26(12), 1922–1926 (2019)

    Article  Google Scholar 

  38. H. Khan, L. Marcuse, M. Fields, K. Swann, B. Yener, Focal onset seizure prediction using convolutional networks. IEEE Trans. Biomed. Eng. (IEEE) 65(9), 2109–2118 (2017)

    Article  Google Scholar 

  39. A. De, A.S. Chowdhury, DTI based Alzheimer’s disease classification with rank modulated fusion of CNNs and random forest. Expert Syst. Appl. (Elsevier) 169, 114338 (2021)

    Article  Google Scholar 

  40. H. Nawaz, M. Maqsood, S. Afzal, F. Aadil, I. Mehmood, S. Rho, A deep feature-based real-time system for Alzheimer disease stage detection. Multimed. Tools Appl. (Springer) 80, 35789–35807 (2021)

    Article  Google Scholar 

  41. B.A. Mohammed, E.M. Senan, T.H. Rassem, N.M. Makbol, A.A. Alanazi, Z.G. Al-Mekhlafi, F.A. Ghaleb, Multi-method analysis of medical records and MRI images for early diagnosis of dementia and Alzheimer’s disease based on deep learning and hybrid methods. Electronics (Multidisciplinary Digital Publishing Institute) 10(22), 2860 (2021)

    Google Scholar 

  42. S. Korolev, A. Safiullin, M. Belyaev, Y. Dodonova, Residual and plain convolutional neural networks for 3D brain MRI classification, in 14th International Symposium on Biomedical Imaging (ISBI 2017), (IEEE, Melbourne, VIC, Australia, 2017), pp. 835–838

    Google Scholar 

  43. N.T. Duc, S. Ryu, M.N.I. Qureshi, M. Choi, K.H. Lee, B. Lee, 3D-deep learning based automatic diagnosis of Alzheimer’s disease with joint MMSE prediction using resting-state fMRI. Neuroinformatics (Springer) 18, 71–86 (2020)

    Article  Google Scholar 

  44. A. Basher, B.C. Kim, K.H. Lee, H.Y. Jung, Volumetric feature-based Alzheimer’s disease diagnosis from sMRI data using a convolutional neural network and a deep neural network. IEEE Access (IEEE) 9, 29870–29882 (2021)

    Article  Google Scholar 

  45. M. Subramoniam, T.R. Aparna, P.R. Anurenjan, K.G. Sreeni, Deep learning-based prediction of Alzheimer’s disease from magnetic resonance images, in Intelligent Vision in Healthcare, (Springer, 2022), pp. 145–151

    Chapter  Google Scholar 

  46. M. Jyotiyana, N. Kesswani, M. Kumar, A deep learning approach for classification and diagnosis of Parkinson’s disease. Soft Comput. (Springer) 26(18), 9155–9165 (2022)

    Article  Google Scholar 

  47. G. Pahuja, T.N. Nagabhushan, A comparative study of existing machine learning approaches for Parkinson’s disease detection. IETE J. Res. (Taylor & Francis) 67(1), 4–14 (2021)

    Article  Google Scholar 

  48. B. Pearce, P. Coetzee, D. Rowland, S. Linfoot, D.T. Dexter, D. Gveric, S. Gentleman, Automatic Sample Segmentation & Detection of Parkinson’s Disease Using Synthetic Staining & Deep Learning (bioRxiv. Cold Spring Harbor Laboratory, 2022), pp. 2022–2008

    Google Scholar 

  49. M.B.T. Noor, N.Z. Zenia, M.S. Kaiser, S.A. Mamun, M. Mahmud, Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain Inform. (Springer) 7, 1–21 (2020)

    Google Scholar 

  50. R. Ullah, Y. Dong, T. Arslan, S. Chandran, A machine learning-based classification method for monitoring Alzheimer’s disease using electromagnetic radar data, in IEEE Transactions on Microwave Theory and Techniques, (IEEE, 2023), pp. 4012–4026

    Google Scholar 

  51. Y.Y. Chen, C.W. Cho, S.H. Lin, H.Y. Lai, Y.C. Lo, S.Y. Chen, S.T. Tsai, A vision-based regression model to evaluate Parkinsonian gait from monocular image sequences. Expert Syst. Appl. (Elsevier) 39(1), 520–526 (2012)

    Article  Google Scholar 

  52. Alzheimer’s Dataset (4 class of Images), https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images, last accessed 30/8/2023

  53. Parkinsons Dataset, https://archive.ics.uci.edu/ml/datasets/parkinsons, last accessed 30/8/2023

  54. V.P.G.P. Rathi, S. Palani, Brain tumor detection and classification using deep learning classifier on MRI images. Res. J. Appl. Sci. Eng. Technol. (Maxwell Science Publishing) 10(2), 177–187 (2015)

    Google Scholar 

  55. H.R. Almadhoun, S.S. Abu-Naser, Detection of brain tumor using deep learning. Int. J. Acad. Eng. Res. 6(3), 29–47 (2022)

    Google Scholar 

  56. T. Saba, A.S. Mohamed, M. El-Affendi, J. Amin, M. Sharif, Brain tumor detection using fusion of hand crafted and deep learning features. Cogn. Syst. Res. (Elsevier) 59, 221–230 (2020)

    Article  Google Scholar 

  57. M. Siar, M. Teshnehlab, Brain tumor detection using deep neural network and machine learning algorithm, in 9th International Conference on Computer and Knowledge Engineering (ICCKE), (IEEE, Mashhad, Iran, 2019), pp. 363–368

    Google Scholar 

  58. A.H. Khan, S. Abbas, M.A. Khan, U. Farooq, W.A. Khan, S.Y. Siddiqui, A. Ahmad, Intelligent model for brain tumor identification using deep learning. Appl. Comput. Intell. Soft Comput. (Hindawi Limited) 2022, 1–10 (2022)

    Google Scholar 

  59. S. Sajid, S. Hussain, A. Sarwar, Brain tumor detection and segmentation in MR images using deep learning. Arab. J. Sci. Eng. (Springer) 44, 9249–9261 (2019)

    Article  Google Scholar 

  60. G. Hemanth, M. Janardhan, L. Sujihelen, Design and implementing brain tumor detection using machine learning approach, in 3rd International Conference on Trends in Electronics and Informatics (ICOEI), (IEEE, Tirunelveli, India, 2019), pp. 1289–1294

    Google Scholar 

  61. A. Ari, D. Hanbay, Deep learning based brain tumor classification and detection system. Turk. J. Electr. Eng. Comput. Sci. 26(5), 2275–2286 (2018)

    Article  Google Scholar 

  62. The Bonn EEG time series download page https://www.upf.edu/web/ntsa/downloads/-/asset_publisher/xvT6E4pczrBw/content/2001-indications-of-nonlinear-deterministic-and-finite-dimensional-structures-in-time-series-of-brain-electrical-activity-dependence-on-recording-regi?inheritRedirect=false&redirect=https%3A%2F%2Fwww.upf.edu%2Fweb%2Fntsa%2Fdownloads%3Fp_p_id%3D101_INSTANCE_xvT6E4pczrBw%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1, last accessed 30/8/2023

  63. CHB-MIT Scalp EEG Database, https://physionet.org/content/chbmit/1.0.0/, last accessed 30/8/2023

  64. CHB-MIT Scalp EEG Database, https://archive.physionet.org/pn6/chbmit/, last accessed 30/8/2023

  65. OASIS Brains, https://oasis-brains.org/, last accessed 30/8/2023

  66. ADNI, https://adni.loni.usc.edu/, last accessed 30/8/2023

  67. UPenn and Mayo Clinic’s Seizure Detection Challenge, https://www.kaggle.com/competitions/seizure-detection/data, last accessed 30/8/2023

  68. Alzheimers-Disease-5-Class-Dataset-ADNI, https://www.kaggle.com/datasets/madhucharan/alzheimersdisease5classdatasetadni, last accessed 30/8/2023

  69. Parkinson Disease Spiral Drawings Using Digitized Graphics Tablet Data Set, https://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+tablet, last accessed 30/8/2023

  70. Brain Tumor MRI Dataset, https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset, last accessed 30/8/2023

  71. A. Tagaris, D. Kollias, A. Stafylopatis, G. Tagaris, S. Kollias, Machine Learning for Neurodegenerative Disorder Diagnosis—Survey of Practices and Launch of Benchmark Dataset. Int. J. Artif. Intell. Tools (World Scientific) 27(03), 1850011 (2018)

    Article  Google Scholar 

  72. BraTS 2013, https://paperswithcode.com/dataset/brats-2013-1, last accessed 30/8/2023

  73. BraTS 2015, https://paperswithcode.com/dataset/brats-2015-1, last accessed 30/8/2023

  74. B.H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, K. Van Leemput, The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imag. (IEEE) 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  75. BraTS 2017, https://paperswithcode.com/dataset/brats-2017-1, last accessed 30/8/2023

  76. BraTS 2020, https://www.kaggle.com/datasets/awsaf49/brats20-dataset-training-validation, last accessed 30/8/2023

  77. BraTS 2021, https://www.kaggle.com/datasets/dschettler8845/brats-2021-task1, last accessed 30/8/2023

  78. S. Toshkhujaev, K.H. Lee, K.Y. Choi, J.J. Lee, G.R. Kwon, Y. Gupta, R.K. Lama, Classification of Alzheimer’s disease and mild cognitive impairment based on cortical and subcortical features from MRI T1 brain images utilizing four different types of datasets. J. Healthc. Eng. (Hindawi) (2020)

    Google Scholar 

  79. M. Weiner, P. Aisen, W. Jagust, J.Q. Trojanowki, A.W. Toga, L. Beckett, J.A. Immunotherapy, Acknowledgement List for ADNI Publications

    Google Scholar 

  80. BraTS 2016, https://paperswithcode.com/dataset/brats-2016, last accessed 30/8/2023

  81. A. Luque, A. Carrasco, A. Martín, A. de Las Heras, The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recogn. 91, 216–231 (2019)

    Article  Google Scholar 

  82. M. Hossin, M.N. Sulaiman, A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process (Academy and Industry Research Collaboration Center (AIRCC)) 5(2), 01–11 (2015)

    Google Scholar 

  83. Confusion Matrix, https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9aa3bf7826, last accessed 30/8/2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin M. Saleh Aouto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aouto, L.M.S., Aouto, L.M.S., Flifel, R.K., Ibrahim, D.M. (2024). A Comprehensive Review of Brain Diseases Classification Using Deep Learning Techniques. In: Shaikh, A., Alghamdi, A., Tan, Q., El Emary, I.M.M. (eds) Advances in Emerging Information and Communication Technology. ICIEICT 2023. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-53237-5_24

Download citation

Publish with us

Policies and ethics