Skip to main content

Clinical Genomics to Drug Discovery Using Machine Learning for Neurodegenerative Disorders: A Future Perspective

  • Chapter
  • First Online:
AI and Neuro-Degenerative Diseases

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1131))

  • 20 Accesses

Abstract

Neurodegenerative diseases affect the central nervous system and lead to death of neuronal cells. Development of therapeutics for neurodegenerative diseases is more challenging as compared to other diseases. Exploring the association of neurodegenerative diseases with human gut microbiome can lead to development of microbiome-based therapeutics. Advancement in tools and techniques has changed the face of traditional clinical genomics. Integration of omics approach with computer-aided drug discovery and artificial intelligence gives a multi-dimensional insight into diagnosis and prognosis of neurodegenerative diseases. Faecal samples of patients of neurodegenerative diseases can be analysed using Next Generation Sequencing approach and can be further integrate with drug discovery approach to get insight into the important genes of highly abundant microbes in human gut. Furthermore, Magnetic Resonance Imaging (MRI), Single-photon emission computed tomography (SPECT), and positron emission tomography (PET) of patients can be analysed using various Artificial Intelligence approach to develop models for prediction and analysis of the neurodegenerative disease as well as classification of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Açıcı, K., Erdaş, Ç. B., Aşuroğlu, T., Toprak, M. K., Erdem, H., & Oğul, H. (2017). A random forest method to detect Parkinson’s disease via gait analysis. In G. Boracchi, L. Iliadis, C. Jayne, & A. Likas (Eds.), Engineering Applications of Neural Networks (Vol. 744, pp. 609–619). Springer International Publishing. https://doi.org/10.1007/978-3-319-65172-9_51.

  2. Agosta, F., Galantucci, S., & Filippi, M. (2017). Advanced magnetic resonance imaging of neurodegenerative diseases. Neurological Sciences, 38(1), 41–51. https://doi.org/10.1007/s10072-016-2764-x

    Article  Google Scholar 

  3. Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-Bacterial Mutualism in the human intestine. Science, 307(5717), 1915–1920. https://doi.org/10.1126/science.1104816

    Article  Google Scholar 

  4. Bandisode, M. I., Bhanushali, M. R., Singh, M. V., Singh, M. V., & Deshmukh, M. A. (2019). Prediction of Parkinson Disease Using Knn Algorithm, 6(4).

    Google Scholar 

  5. Behjati, S., & Tarpey, P. S. (2013). What is next generation sequencing? Archives of Disease in Childhood—Education & Practice Edition, 98(6), 236–238. https://doi.org/10.1136/archdischild-2013-304340

    Article  Google Scholar 

  6. Bharath, E., & Rajagopalana, T. (2023). Parkinson’s disease classification using random forest kerb feature selection. Intelligent Automation & Soft Computing, 36(2), 1417–1433. https://doi.org/10.32604/iasc.2023.032102

  7. Bhatia, D. A., & Sulekh, R. (2017). Predictive model for Parkinson’s disease through Naïve Bayes Classification, 9(1).

    Google Scholar 

  8. Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259. https://doi.org/10.1007/BF00308809

    Article  Google Scholar 

  9. Braak, H., R. B, U., Gai, W. P., & Del Tredici, K. (2003). Idiopathic Parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. Journal of Neural Transmission, 110(5), 517–536.https://doi.org/10.1007/s00702-002-0808-2.

  10. Chan, H. C. S., Shan, H., Dahoun, T., Vogel, H., & Yuan, S. (2019). Advancing drug discovery via artificial intelligence. Trends in Pharmacological Sciences, 40(8), 592–604. https://doi.org/10.1016/j.tips.2019.06.004

    Article  Google Scholar 

  11. Collins, F. S., & Fink, L. (1995). The human genome project, 19(3).

    Google Scholar 

  12. Erkkinen, M. G., Kim, M.-O., & Geschwind, M. D. (2018). Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 10(4), a033118. https://doi.org/10.1101/cshperspect.a033118

    Article  Google Scholar 

  13. Gromski, P. S., Granda, J. M., & Cronin, L. (2020). Universal chemical synthesis and discovery with ‘The Chemputer.’ Trends in Chemistry, 2(1), 4–12. https://doi.org/10.1016/j.trechm.2019.07.004

    Article  Google Scholar 

  14. Haller, S., Badoud, S., Nguyen, D., Garibotto, V., Lovblad, K. O., & Burkhard, P. R. (2012). Individual detection of patients with parkinson disease using support vector machine analysis of diffusion tensor imaging data: Initial results. American Journal of Neuroradiology, 33(11), 2123–2128. https://doi.org/10.3174/ajnr.A3126

    Article  Google Scholar 

  15. Hauser, R. A., & Olanow, C. W. (1994). Magnetic resonance imaging of neurodegenerative diseases. Journal of Neuroimaging, 4(3), 146–158. https://doi.org/10.1111/jon199443146

    Article  Google Scholar 

  16. Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., & Bohr, V. A. (2019). Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology, 15(10), 565–581. https://doi.org/10.1038/s41582-019-0244-7

    Article  Google Scholar 

  17. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589.https://doi.org/10.1038/s41586-021-03819-2

  18. Khorasani, A., & Daliri, M. R. (2014). HMM for classification of Parkinson’s disease based on the raw gait data. Journal of Medical Systems, 38(12), 147. https://doi.org/10.1007/s10916-014-0147-5

    Article  Google Scholar 

  19. Kim, J.-W., Kwon, Y., Yun, J.-S., Heo, J.-H., Eom, G.-M., Tack, G.-R., Lim, T.-H., & Koh, S.-B. (2015). Regression models for the quantification of Parkinsonian bradykinesia. Bio-Medical Materials and Engineering, 26(s1), S2249–S2258. https://doi.org/10.3233/BME-151531

    Article  Google Scholar 

  20. Liu, P., Wu, L., Peng, G., Han, Y., Tang, R., Ge, J., Zhang, L., Jia, L., Yue, S., Zhou, K., Li, L., Luo, B., & Wang, B. (2019). Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain, Behavior, and Immunity, 80, 633–643. https://doi.org/10.1016/j.bbi.2019.05.008

    Article  Google Scholar 

  21. Lloyd-Price, J., Abu-Ali, G., & Huttenhower, C. (2016). The healthy human microbiome. Genome Medicine, 8(1), 51. https://doi.org/10.1186/s13073-016-0307-y

    Article  Google Scholar 

  22. Long, J. M., & Holtzman, D. M. (2019). Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 179(2), 312–339. https://doi.org/10.1016/j.cell.2019.09.001

    Article  Google Scholar 

  23. Lu, F.-M., & Yuan, Z. (2015). PET/SPECT molecular imaging in clinical neuroscience: Recent advances in the investigation of CNS diseases. Quantitative Imaging in Medicine and Surgery, 5(3).

    Google Scholar 

  24. Mantere, T., Kersten, S., & Hoischen, A. (2019). Long-read sequencing emerging in medical genetics. Frontiers in Genetics, 10, 426. https://doi.org/10.3389/fgene.2019.00426

    Article  Google Scholar 

  25. Mayr, A., Klambauer, G., Unterthiner, T., & Hochreiter, S. (2016). DeepTox: Toxicity prediction using deep learning. Frontiers in Environmental Science, 3. https://doi.org/10.3389/fenvs.2015.00080

  26. Pan, D., Zeng, A., Jia, L., Huang, Y., Frizzell, T., & Song, X. (2020). Early Detection of Alzheimer’s disease using magnetic resonance imaging: A novel approach combining convolutional neural networks and ensemble learning. Frontiers in Neuroscience, 14, 259. https://doi.org/10.3389/fnins.2020.00259

    Article  Google Scholar 

  27. Pereira, J. C., Caffarena, E. R., & Dos Santos, C. N. (2016). Boosting docking-based virtual screening with deep learning. Journal of Chemical Information and Modeling, 56(12), 2495–2506. https://doi.org/10.1021/acs.jcim.6b00355

    Article  Google Scholar 

  28. Ronaghi, M. (n.d.). Pyrosequencing sheds light on DNA sequencing.

    Google Scholar 

  29. Rumman, M., Tasneem, A. N., Farzana, S., Pavel, M. I., & Alam, Md. A. (2018). Early detection of Parkinson’s disease using image processing and artificial neural network. 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (IcIVPR), 256–261. https://doi.org/10.1109/ICIEV.2018.8641081

  30. Salipante, S. J., Kawashima, T., Rosenthal, C., Hoogestraat, D. R., Cummings, L. A., Sengupta, D. J., Harkins, T. T., Cookson, B. T., & Hoffman, N. G. (2014). Performance comparison of Illumina and Ion torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. Applied and Environmental Microbiology, 80(24), 7583–7591. https://doi.org/10.1128/AEM.02206-14

    Article  Google Scholar 

  31. Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLOS Biology, 14(8), e1002533. https://doi.org/10.1371/journal.pbio.1002533

    Article  Google Scholar 

  32. Shahid, A. H., & Singh, M. P. (2020). A deep learning approach for prediction of Parkinson’s disease progression. Biomedical Engineering Letters, 10(2), 227–239. https://doi.org/10.1007/s13534-020-00156-7

    Article  Google Scholar 

  33. Sheikh, H., Prins, C., & Schrijvers, E. (2023). Mission AI: The new system technology. Springer International Publishing.https://doi.org/10.1007/978-3-031-21448-6

  34. Shen, T., Yue, Y., He, T., Huang, C., Qu, B., Lv, W., & Lai, H.-Y. (2021). The Association between the gut microbiota and Parkinson’s disease, a meta-analysis. Frontiers in Aging Neuroscience, 13, 636545. https://doi.org/10.3389/fnagi.2021.636545

    Article  Google Scholar 

  35. Simon, S. A., Zhai, J., Nandety, R. S., McCormick, K. P., Zeng, J., Mejia, D., & Meyers, B. C. (2009). Short-read sequencing technologies for transcriptional analyses. Annual Review of Plant Biology, 60(1), 305–333. https://doi.org/10.1146/annurev.arplant.043008.092032

    Article  Google Scholar 

  36. Stork, C., Chen, Y., Šícho, M., & Kirchmair, J. (2019). Hit Dexter 2.0: Machine-learning models for the prediction of frequent hitters. Journal of Chemical Information and Modeling, 59(3), 1030–1043. https://doi.org/10.1021/acs.jcim.8b00677

  37. Wang, C., & Zhang, Y. (2017). Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. Journal of Computational Chemistry, 38(3), 169–177. https://doi.org/10.1002/jcc.24667

    Article  Google Scholar 

  38. Zhu, H. (2020). Big data and artificial intelligence modeling for drug discovery. Annual Review of Pharmacology and Toxicology, 60(1), 573–589. https://doi.org/10.1146/annurev-pharmtox-010919-023324

    Article  Google Scholar 

  39. Zhu, M., Liu, X., Ye, Y., Yan, X., Cheng, Y., Zhao, L., Chen, F., & Ling, Z. (2022). Gut microbiota: A novel therapeutic target for Parkinson’s disease. Frontiers in Immunology, 13, 937555. https://doi.org/10.3389/fimmu.2022.937555

    Article  Google Scholar 

  40. Zoetendal, E. G., Akkermans, A. D. L., & De Vos, W. M. (1998). Temperature gradient gel electrophoresis analysis of 16S rRNA from human Fecal samples reveals stable and host-specific communities of active Bacteria. Applied and Environmental Microbiology, 64(10), 3854–3859. https://doi.org/10.1128/AEM.64.10.3854-3859.1998

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sundeep Singh Saluja or Parameswar Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, A.K., Sahoo, R., Jena, L., Saluja, S.S., Sahu, P. (2024). Clinical Genomics to Drug Discovery Using Machine Learning for Neurodegenerative Disorders: A Future Perspective. In: Gaur, L., Abraham, A., Ajith, R. (eds) AI and Neuro-Degenerative Diseases. Studies in Computational Intelligence, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-031-53148-4_4

Download citation

Publish with us

Policies and ethics