Skip to main content

Assessing the Reliability of AI-Based Angle Detection for Shoulder and Elbow Rehabilitation

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2023)

Abstract

Angle assessment is crucial in rehabilitation and significantly influences physiotherapists’ decision-making. Although visual inspection is commonly used, it is known to be approximate. This work aims to be a preliminary study about using the AI image-based to assess upper limb joint angles. Two main frameworks were evaluated: MediaPipe and Yolo v7. The study was performed with 28 participants performing four upper limb movements. The results showed that Yolo v7 achieved greater estimation accuracy than Mediapipe, with MAEs of around \(5^\circ \) and \(17^\circ \), respectively. However, even with better results, Yolo v7 showed some limitations, including the point of detection in only a 2D plane, the higher computational power required to enable detection, and the difficulty of performing movements requiring more than one degree of Freedom (DOF). Nevertheless, this study highlights the detection capabilities of AI approaches, showing be a promising approach for measuring angles in rehabilitation activities, representing a cost-effective and easy-to-implement solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://scikit-learn.org/stable/index.html.

  2. 2.

    https://pytorch.org/.

  3. 3.

    https://www.tensorflow.org/.

  4. 4.

    https://github.com/WongKinYiu/yolov7.

  5. 5.

    https://developers.google.com/mediapipe.

  6. 6.

    https://cocodataset.org/#home.

  7. 7.

    https://github.com/WongKinYiu/yolov7.

  8. 8.

    https://pypi.org/project/opencv-python/.

  9. 9.

    https://github.com/CMU-Perceptual-Computing-Lab/openpose.

References

  1. Klopčar, N., Lenarčič, J.: Kinematic model for determination of human arm reachable workspace. Meccanica 40, 203–219 (2005)

    Article  MathSciNet  Google Scholar 

  2. Liu, L., et al.: Kinematics analysis of arms in synchronized canoeing with wearable inertial measurement unit. IEEE Sens. J. (2023)

    Google Scholar 

  3. Liu, R., Liu, C.: Human motion prediction using adaptable recurrent neural networks and inverse kinematics. IEEE Control Syst. Lett. 5(5), 1651–1656 (2020)

    Article  Google Scholar 

  4. O’Sullivan, S.B., Schmitz, T.J.: Physical Rehabilitation. 5th edn (2007)

    Google Scholar 

  5. Kelley, M.J., Mcclure, P.W., Leggin, B.G.: Frozen shoulder: evidence and a proposed model guiding rehabilitation. J. Orthopaedic Sports Phys. Therapy 39(2), 135–148 (2009)

    Google Scholar 

  6. Olsen, T.S.: Arm and leg paresis as outcome predictors in stroke rehabilitation. Stroke 21(2), 247–251 (1990)

    Google Scholar 

  7. Qassim, H.M., Hasan, W.Z.W.: A review on upper limb rehabilitation robots. Appl. Sci. 10(19), 6976 (2020)

    Google Scholar 

  8. Krebs, H.I., Volpe, B.T.: Chapter 23 - Rehabilitation robotics. In: Barnes, M.P., Good, D.C. (eds.) Neurological Rehabilitation. Handbook of Clinical Neurology, vol. 110, pp. 283–294. Elsevier, Amsterdam (2013)

    Chapter  Google Scholar 

  9. Argent, R., Drummond, S., Remus, A., O’Reilly, M., Caulfield, B.: Evaluating the use of machine learning in the assessment of joint angle using a single inertial sensor. J. Rehabil. Assist. Technol. Eng. 6 (2019)

    Google Scholar 

  10. Wochatz, M., et al.: Reliability and validity of the kinect v2 for the assessment of lower extremity rehabilitation exercises. Gait Posture 70, 330–335 (2019)

    Article  Google Scholar 

  11. Denecke, K., Baudoin, C.R.: A review of artificial intelligence and robotics in transformed health ecosystems. Front. Med. 9 (2022)

    Google Scholar 

  12. Luxton, D.D., Riek, L.D.: Artificial intelligence and robotics in rehabilitation (2019)

    Google Scholar 

  13. Yuan, F., Klavon, E., Liu, Z., Lopez, R.P., Zhao, X.: A systematic review of robotic rehabilitation for cognitive training. Front. Robot. AI 8 (2021)

    Google Scholar 

  14. Phan, G.H., Solanki, V.K., Quang, N.H.: Artificial intelligence in rehabilitation evaluation-based robotic exoskeletons: a review. In: Bio-inspired Motor Control Strategies for Redundant and Flexible Manipulator with Application to Tooling Tasks. SAST, pp. 79–91. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-9551-3_6

    Chapter  Google Scholar 

  15. Kaelin, V.C., Valizadeh, M., Salgado, Z., Parde, N., Khetani, M.A.: Artificial intelligence in rehabilitation targeting the participation of children and youth with disabilities: scoping review. J. Med. Internet Res. 23(11), e25745 (2021)

    Google Scholar 

  16. Bermejo, C., Pan, H.: A survey on haptic technologies for mobile augmented reality. ACM Comput. Surv. 54(9), 1–35 (2022)

    Article  Google Scholar 

  17. Leardini, A., Lullini, G., Giannini, S., Berti, L., Ortolani, M., Caravaggi, P.: Validation of the angular measurements of a new inertial-measurement-unit based rehabilitation system: comparison with state-of-the-art gait analysis. J. Neuroeng. Rehabil. 11(1), 1–7 (2014)

    Article  Google Scholar 

  18. Daponte, P., De Vito, L., Riccio, M., Sementa, C.: Design and validation of a motion-tracking system for rom measurements in home rehabilitation. Measurement 55, 82–96 (2014)

    Article  Google Scholar 

  19. Boato, G., Conci, N., Daldoss, M., De Natale, F.G.B., Piotto, N.: Hand tracking and trajectory analysis for physical rehabilitation. In: 2009 IEEE International Workshop on Multimedia Signal Processing, pp. 1–6 (2009)

    Google Scholar 

  20. Zestas, O.N., Soumis, D.N., Kyriakou, K.D., et al.: A computer-vision based hand rehabilitation assessment suite. AEU - Int. J. Electron. Commun. 169, 154762 (2023)

    Google Scholar 

  21. Lin, G., Wu, W., Lin, C., Song, Y., Xie, L., Cai, S.: A vision-based compensation detection approach during robotic stroke rehabilitation therapy. In: 3rd International Academic Exchange Conference on Science and Technology Innovation, IAECST 2021, pp. 768–771 (2021)

    Google Scholar 

  22. Russell, S.J.: Artificial Intelligence a Modern Approach. Pearson Education Inc, London (2010)

    Google Scholar 

  23. Lugaresi, C., et al.: Mediapipe: a framework for building perception pipelines. arXiv preprint arXiv:1906.08172 (2019)

  24. Bazarevsky, V., Grishchenko, I., Raveendran, K., Zhu, T., Zhang, F., Grundmann, M.: Blazepose: on-device real-time body pose tracking. arXiv preprint arXiv:2006.10204 (2020)

  25. Bazarevsky, I., Grishchenko, V.: On-device, real-time body pose tracking with mediapipe blazepose, June 2023. https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html

  26. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. CoRR, abs/1506.02640 (2015)

    Google Scholar 

  27. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)

  28. Wang, C.-Y., Liao, H.-Y.M., Yeh, I.-H.: Designing network design strategies through gradient path analysis. arXiv preprint arXiv:2211.04800 (2022)

  29. Chellal, A.A., et al.: Smarthealth: a robotic control software for upper limb rehabilitation. In: Brito Palma, L., Neves-Silva, R., Gomes, L. (eds.) CONTROLO 2022. LNNE, vol. 930, pp. 667–676. Springer, Cham (2022)

    Chapter  Google Scholar 

  30. Chellal, A.A., et al.: Robot-assisted rehabilitation architecture supported by a distributed data acquisition system. Sensors 22(23), 9532 (2022)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by SmartHealth - Inteligência Artificial para Cuidados de Saúde Personalizados ao Longo da Vida, under the project ref. NORTE-01-0145-FEDER-000045. The authors are grateful to the Foundation for Science and Technology (FCT) for financial support under ref. FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021). Arezki A. Chellal is grateful to the FCT Foundation for its support through the FCT PhD scholarship with ref. UI/BD/154484/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luan C. Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klein, L.C. et al. (2024). Assessing the Reliability of AI-Based Angle Detection for Shoulder and Elbow Rehabilitation. In: Pereira, A.I., Mendes, A., Fernandes, F.P., Pacheco, M.F., Coelho, J.P., Lima, J. (eds) Optimization, Learning Algorithms and Applications. OL2A 2023. Communications in Computer and Information Science, vol 1982 . Springer, Cham. https://doi.org/10.1007/978-3-031-53036-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53036-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53035-7

  • Online ISBN: 978-3-031-53036-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics