Skip to main content

Microfluidic Configurations for Producing Tip Streaming

  • Chapter
  • First Online:
Tip Streaming of Simple and Complex Fluids

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 137))

  • 47 Accesses

Abstract

As described in the previous chapter, tip streaming can be produced by accelerating the fluid in the tip of a mother drop. Stresses of hydrodynamic or electrohydrodynamic nature drive this acceleration to the extent of overcoming the resistance offered by the capillary and viscous forces. This phenomenon has modest practical (technological) applications due to the intrinsic unsteady character of the process. Besides, the experimenter has limited control over the flow outcome (for instance, the size of the emitted droplets), which can be achieved only by fixing the flow rate at which the dispersed phase is ejected.

When the droplet is attached to a capillary and fed at the appropriate flow rate, the system eventually adopts either the microdripping or microjetting mode. Microdripping periodically emits tiny droplets of almost equal size from the droplet tip, while microjetting steadily ejects a thin, long, fluid thread. Microdripping and microjetting can produce droplets with the desired morphology, size, and electrical charge.

This chapter describes the axisymmetric microfluidic configurations used to produce microdripping and microjetting. Specifically, we consider the cone-jet mode of electrospray and the coflowing, flow focusing, and confined selective withdrawal configurations. The characteristics of the selective withdrawal and electrified films are also discussed. We introduce and explain the meaning of the dimensionless numbers characterizing the corresponding flows. The numerical and experimental results will be discussed in the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shin D, Yoo S, Song H, Tak H, Byun D (2005) Electrostatic-force-assisted dispensing printing to construct high-aspect-ratio of 0.79 electrodes on a textured surface with improved adhesion and contact resistivity. Sci Rep 5:16,704

    Google Scholar 

  2. Herrada MA, Gañán-Calvo AM, Ojeda-Monge A, Bluth B, Riesco-Chueca P (2008) Liquid flow focused by a gas: jetting, dripping, and recirculation. Phys Rev E 78(036):323

    Google Scholar 

  3. Herrada MA, López-Herrera JM, Gañán-Calvo AM, Vega EJ, Montanero JM, Popinet S (2012) Numerical simulation of electrospray in the cone-jet mode. Phys Rev E 86(026):305

    Google Scholar 

  4. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using flow focusing in microchannels. Appl Phys Lett 82:364–366

    Article  Google Scholar 

  5. Castro-Hernández E, van Hoeve W, Lohse D, Gordillo JM (2011) Microbubble generation in a co-flow device operated in a new regime. Lab Chip 11:2023–2029

    Article  Google Scholar 

  6. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  7. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116

    Article  Google Scholar 

  8. Takeuchi S, Garstecki P, Weibel DB, Whitesides GM (2005) An axisymmetric flow-focusing microfluidic device. Adv Mater 17:1067–1072

    Article  Google Scholar 

  9. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541

    Article  Google Scholar 

  10. DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D, Spence JCH, Doak RB (2008) Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D Appl Phys 41(195):505

    Google Scholar 

  11. Muñoz-Sánchez BN, Cabezas MG (2018) Borosilicate nozzles manufactured by reproducible fire shaping. J Mater Proces Tech 261:173–183

    Article  Google Scholar 

  12. Muñoz-Sánchez BN, Gañán-Calvo AM, Cabezas MG (2019) A new fire shaping approach to produce highly axisymmetric and reproducible nozzles. J Mater Process Tech 270:241–253

    Article  Google Scholar 

  13. Si T, Feng HX, Luo XS, Xu RX (2015) Formation of steady compound cone-jet modes and multilayered droplets in a tri-axial capillary flow focusing device. Microfluid Nanofluid 18:967–977

    Article  Google Scholar 

  14. Trebbin M, Kruger K, DePonte D, Roth SV, Chapman HN, Forster S (2014) Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions. Lab Chip 14:1733–1745

    Article  Google Scholar 

  15. Beyerlein KR, Adriano L, Heymann M, Kirian R, Knoska J, Wilde F, Chapman HN, Bajt S (2015) Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery. Rev Sci Instrum 86(125):104

    Google Scholar 

  16. Knoska J et al (2020) Ultracompact 3D microfluidics for time-resolved structural biology. Nat Commun 11:657

    Article  Google Scholar 

  17. Rubio A, Rodríguez S, Cabezas MG (2020) Capabilities and limitations of fire-shaping to produce glass nozzles. Materials 13:5477

    Article  Google Scholar 

  18. Nelson G et al (2016) Three-dimensional-printed gas dynamic virtual nozzles for X-ray laser sample delivery. Opt Express 24:11,515–11,530

    Google Scholar 

  19. Stone HA, Stroock A, Ajdari A (2004) Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  20. Cristini V, Tan YC (2004) Theory and numerical simulation of droplet dynamics in complex flows-a review. Lab Chip 4:257–264

    Article  Google Scholar 

  21. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  22. Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40:R319–R336

    Article  Google Scholar 

  23. Anna SL (2016) Droplets and bubbles in microfluidic devices. Annu Rev Fluid Mech 48:285–309

    Article  MathSciNet  Google Scholar 

  24. Barrero A, Loscertales IG (2007) Micro and nanoparticles via capillary flows. Annu Rev Fluid Mech 39:89–106

    Article  Google Scholar 

  25. Gu H, Duits MHG, Mugele F (2011) Droplets formation and merging in two-phase flow microfluidics. Int J Mol Sci 12:2572–2597

    Article  Google Scholar 

  26. Vladisavljevic GT, Kobayashi I, Nakajima M (2012) Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid Nanofluid 13:151–178

    Article  Google Scholar 

  27. Zhuab P, Wang L (2017) Passive and active droplet generation with microfluidics: a review. Lab Chip 17:34–75

    Article  Google Scholar 

  28. Montanero JM, Gañán-Calvo AM (2020) Dripping, jetting and tip streaming. Rep Prog Phys 83(097):001

    MathSciNet  Google Scholar 

  29. Snoeijer JH, Andreotti B (2013) Moving contact lines: scales, regimes, and dynamical transitions. Annu Rev Fluid Mech 45:269–292

    Article  MathSciNet  Google Scholar 

  30. Sui Y, Ding H, Spelt PDM (2014) Numerical simulations of flows with moving contact lines. Annu Rev Fluid Mech 46:97–119

    Article  MathSciNet  Google Scholar 

  31. Oberthuer D et al (2017) Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci Rep 7(44):628

    Google Scholar 

  32. Acero AJ, Montanero JM, Ferrera C, Herrada MA, Gañán-Calvo AM (2012) Enhancement of the stability of the flow focusing technique for low-viscosity liquids. J Micromech Microeng 22(115):039

    Google Scholar 

  33. Morad M, Rajabi A, Razavi M, Sereshkeh SP (2016) A very stable high throughput Taylor cone-jet in electrohydrodynamics. Sci Rep 6(38):509

    Google Scholar 

  34. Sen AK, Darabi J, Knapp DR, Liu J (2006) Modeling and characterization of a carbon fiber emitter for electrospray ionization. J Micromech Microeng 16:620–630

    Article  Google Scholar 

  35. Lozano P, Martínez-Sánchez M (2005) On the dynamic response of externally wetted ionic liquid ion sources. J Phys D 38:2371–2377

    Article  Google Scholar 

  36. Dole M, Mack LL, Hines RL, Mobley RC, Ferguson LD, Alice MB (1968) Molecular beams of macroions. J Chem Phys 49:2240–2249

    Article  Google Scholar 

  37. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  Google Scholar 

  38. Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679

    Article  Google Scholar 

  39. Acero AJ, Rebollo-Muñoz N, Montanero JM, Gañán-Calvo AM, Vega EJ (2013) A new flow focusing technique to produce very thin jets. J Micromech Microeng 23(065):009

    Google Scholar 

  40. Rebollo-Muñoz N, Acero AJ, Marcos de León JZ, Montanero J, Gañán-Calvo A (2016) A hybrid flow focusing nozzle design to produce micron and sub-micron capillary jets. Int J Mass Spectrom 403:32–38

    Article  Google Scholar 

  41. Nazari R, Zaare S, Alvarez RC, Karpos K, Engelman T, Madsen C, Nelson G, Spence JCH, Weierstall U, Adrian RJ, Kirian RA (2020) 3D printing of gas-dynamic virtual nozzles and optical characterization of high-speed microjets. Opt Express 28:21,749–21,765

    Google Scholar 

  42. Ponce-Torres A, Rebollo-Muñoz N, Herrada MA, Gañán-Calvo AM, Montanero JM (2018) The steady cone-jet mode of electrospraying close to the minimum volume stability limit. J Fluid Mech 857:142–172

    Article  MathSciNet  Google Scholar 

  43. Gañán-Calvo AM, Rebollo-Muñoz N, Montanero JM (2013) Physical symmetries and scaling laws for the minimum or natural rate of flow and droplet size ejected by Taylor cone-jets. New J Phys 15(033):035

    Google Scholar 

  44. Suryo R, Basaran OA (2006) Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Phys Fluids 18(082):102

    Google Scholar 

  45. Guillot P, Colin A, Utada AS, Ajdari A (2007) Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys Rev Lett 99(104):502

    Google Scholar 

  46. Guillot P, Colin A, Ajdari A (2008) Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Phys Rev E 78(016):307

    Google Scholar 

  47. Cramer C, Fischer P, Windhab EJ (2004) Drop formation in a co-flowing ambient fluid. Chem Engin Sci 59:3045–3058

    Article  Google Scholar 

  48. Utada AS, Fernandez-Nieves A, Gordillo JM, Weitz DA (2008) Absolute instability of a liquid jet in a coflowing stream. Phys Rev Lett 100(014):502

    Google Scholar 

  49. Cabezas MG, Herrada MA, Montanero JM (2019) Stability of a jet moving in a rectangular microchannel. Phys Rev E 100(053):104

    MathSciNet  Google Scholar 

  50. Gañán-Calvo AM (1998) Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys Rev Lett 80:285–288

    Article  Google Scholar 

  51. Gañán-Calvo AM, Montanero JM (2009) Revision of capillary cone-jet physics: electrospray and flow focusing. Phys Rev E 79(066):305

    Google Scholar 

  52. Vega EJ, Montanero JM, Herrada MA, Gañán-Calvo AM (2010) Global and local instability of flow focusing: the influence of the geometry. Phys Fluids 22(064):105

    Google Scholar 

  53. Cruz-Mazo F, Montanero JM, Gañán-Calvo AM (2016) Monosized dripping mode of axisymmetric flow focusing. Phys Rev E 94(053):122

    Google Scholar 

  54. Rubio M, Rubio A, Cabezas MG, Herrada MA, Gañán-Calvo AM, Montanero JM (2021) Transonic flow focusing: stability analysis and jet diameter. Int J Multiphase Flow 142(103):720

    MathSciNet  Google Scholar 

  55. Gañán-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87(274):501

    Google Scholar 

  56. Gañán-Calvo AM (2004) Perfectly monodisperse microbubbling by capillary flow focusing: an alternate physical description and universal scaling. Phys Rev E 69(027):301

    Google Scholar 

  57. Jensen MJ, Stone HA, Bruus H (2006) A numerical study of two-phase Stokes flow in an axisymmetric flow-focusing device. Phys Fluids 18(077):103

    Google Scholar 

  58. Vega EJ, Acero AJ, Montanero JM, Herrada MA, Gañán-Calvo AM (2014) Production of microbubbles from axisymmetric flow focusing in the jetting regime for moderate Reynolds numbers. Phys Rev E 89(063):012

    Google Scholar 

  59. Lister JR (1989) Selective withdrawal from a viscous two-layer system. J Fluid Mech 198:231–254

    Article  MathSciNet  Google Scholar 

  60. Cohen I, Li H, Hougland JL, Mrksich M, Nagel SR (2001) Using selective withdrawal to coat microparticles. Science 292:265–267

    Article  Google Scholar 

  61. Case SC, Nagel SR (2007) Spout states in the selective withdrawal of immiscible fluids through a nozzle suspended above a two-fluid interface. Phys Rev Lett 98(114):501

    Google Scholar 

  62. Blanchette F, Zhang WW (2009) Force balance at the transition from selective withdrawal to viscous entrainment. Phys Rev Lett 102(144):501

    Google Scholar 

  63. Rubio M, Montanero JM (2023) Influence of a soluble surfactant on the transition to tip streaming. Exp Therm Fluid Sci 141(110):776

    Google Scholar 

  64. Oddershede L, Nagel SR (2000) Singularity during the onset of an electrohydrodynamic spout. Phys Rev Lett 85:1234–1237

    Article  Google Scholar 

  65. Collins RT, Jones JJ, Harris MT, Basaran OA (2008) Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat Phys 4:149–154

    Article  Google Scholar 

  66. Ponce-Torres A, Montanero JM, Herrada MA, Vega EJ, Vega JM (2017) Influence of the surface viscosity on the breakup of a surfactant-laden drop. Phys Rev Lett 118(024):501

    Google Scholar 

  67. Ponce-Torres A, Rubio M, Herrada MA, Eggers J, Montanero JM (2020) Influence of the surface viscous stress on the pinch-off of free surfaces loaded with nearly-inviscid surfactants. Sci Rep 10(16):065

    Google Scholar 

  68. Rubio A, Galindo F, Vega EJ, Montanero JM, Cabezas MG (2022) Viscoelastic transition in transonic flow focusing. Phys Rev Fluids 7(074):201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Montanero .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montanero, J.M. (2024). Microfluidic Configurations for Producing Tip Streaming. In: Tip Streaming of Simple and Complex Fluids. Fluid Mechanics and Its Applications, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-031-52768-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52768-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52767-8

  • Online ISBN: 978-3-031-52768-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics