Skip to main content

Bone Marrow Aspirate Concentrates for Knee OA

  • Chapter
  • First Online:
Musculoskeletal Injections Manual

Abstract

Bone marrow aspirate concentrate (BMAC) has emerged as a safe therapeutic orthobiological option to treat symptomatic knee osteoarthritis (OA). Physicians are attracted to use BMAC for knee OA treatments because of the presence of MSCs, as these specialized cells have self-renew and multidirectional-differentiation potentials. Furthermore, the heterogenous composition of BMAC has demonstrated to exert immune-modulatory functions, regulate inflammation, facilitate angiogenesis, and ultimately improve tissue repair, with painkilling effects.

BMAC can be extracted from multiple anatomical sites. However, the posterior superior iliac spine (PSIS) is the most cited location for bone marrow aspirate (BMA) harvesting since most MSCs have been related to this particular harvesting site. Autologously prepared BMAC, prepared at point-of-care (POC), is a concentrated multicellular viable tissue. Following two-step BMA centrifugation procedures, gravitational density separation concentrates and organizes bone marrow cells in a buffy coat stratum. Based on the individual densities, BMAC comprises of mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), stem cell progenitor cells, platelets, leukocytes, and some red blood cells. Pre-procedural preparations, including the appropriate imaging options, patient positioning, the use of local anesthetics, the superolateral injection approach is preferred for intra-articular knee injections. Systematic reviews indicate significant patient outcomes regarding pain reduction and functional improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowen JE. Technical issues in harvesting and concentrating stem cells (bone marrow and adipose). PM R. 2015;7(4S):S8–18. https://doi.org/10.1016/j.pmrj.2015.01.025.

    Article  PubMed  Google Scholar 

  2. Wyles CC, Houdek MT, Wyles SP, Wagner ER, Behfar A, Sierra RJ. Differential cytotoxicity of corticosteroids on human mesenchymal stem cells. Clin Orthop Relat Res. 2015;473(3):1155–64. https://doi.org/10.1007/s11999-014-3925-y.

    Article  PubMed  Google Scholar 

  3. Stephenson AL, Wu W, Cortes D, Rochon PA. Tendon injury and fluoroquinolone use: a systematic review. Drug Saf. 2013;36(9):709–21. https://doi.org/10.1007/s40264-013-0089-8.

    Article  CAS  PubMed  Google Scholar 

  4. Izadpanah R, Schächtele DJ, Pfnür AB, Lin D, Slakey DP, Kadowitz PJ, et al. The impact of statins on biological characteristics of stem cells provides a novel explanation for their pleiotropic beneficial and adverse clinical effects. Am J Physiol Cell Physiol. 2015;309(8):C522–31. https://doi.org/10.1152/ajpcell.00406.2014.

    Article  CAS  PubMed  Google Scholar 

  5. van Esch RW, Kool MM, van As S. NSAIDs can have adverse effects on bone healing. Med Hypotheses. 2013;81(2):343–6. Available from: https://www.sciencedirect.com/science/article/pii/S0306987713001667.

    Article  PubMed  Google Scholar 

  6. Everts PA, Panero AJ. Basic science of autologous orthobiologics: part 2. Mesenchymal stem cells. Orthobiologics. 2023;34(1):25–47. Available from: https://www.sciencedirect.com/science/article/pii/S1047965122000730.

    Google Scholar 

  7. Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther. 2010;21(9):1045–56. https://doi.org/10.1089/hum.2010.115.

    Article  CAS  PubMed  Google Scholar 

  8. Everts PA, Flanagan G, Podesta L. Autologous orthobiologics. In: Mostoufi SA, George TK, Tria Jr AJ, editors. Clinical guide to musculoskeletal medicine: a multidisciplinary approach. Cham: Springer; 2022. p. 651–79. https://doi.org/10.1007/978-3-030-92042-5_62.

    Chapter  Google Scholar 

  9. McDaniel JS, Antebi B, Pilia M, Hurtgen BJ, Belenkiy S, Necsoiu C, et al. Quantitative assessment of optimal bone marrow site for the isolation of porcine mesenchymal stem cells. Stem Cells Int. 2017;2017:1–10. Available from: https://www.hindawi.com/journals/sci/2017/1836960/.

    Article  Google Scholar 

  10. Lambertsen RH, Weiss L. Studies on the organization and regeneration of bone marrow: origin, growth, and differentiation of endocloned hematopoietic colonies. Am J Anat. 1983;166(4):369–92. https://doi.org/10.1002/aja.1001660402.

    Article  CAS  PubMed  Google Scholar 

  11. Muguruma Y, Yahata T, Miyatake H, Sato T, Uno T, Itoh J, et al. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood. 2006;107(5):1878–87. Available from: https://ashpublications.org/blood/article/107/5/1878/133429/Reconstitution-of-the-functional-human.

    Article  CAS  PubMed  Google Scholar 

  12. Fliedner TM, Graessle D, Paulsen C, Reimers K. Structure and function of bone marrow hemopoiesis: mechanisms of response to ionizing radiation exposure. Cancer Biother Radiopharm. 2002;17(4):405–26. Available from: http://www.liebertpub.com/doi/10.1089/108497802760363204.

    CAS  PubMed  Google Scholar 

  13. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature. 2001;414(6859):98–104. Available from: http://www.nature.com/articles/35102160.

    Article  CAS  PubMed  Google Scholar 

  14. Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005;21:605–31.

    Article  CAS  PubMed  Google Scholar 

  15. Wu P, Tarasenko YI, Gu Y, Huang LYM, Coggeshall RE, Yu Y. Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat Neurosci. 2002;5(12):1271–8. Available from: http://www.nature.com/articles/nn974.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002;174(1):11–20. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014488601978537.

    Article  PubMed  Google Scholar 

  17. Hernigou P, Homma Y, Flouzat Lachaniette CH, Poignard A, Allain J, Chevallier N, et al. Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int Orthop. 2013;37(11):2279–87. Available from: http://link.springer.com/10.1007/s00264-013-2017-z.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oliver K, Awan T, Bayes M. Single-versus multiple-site harvesting techniques for bone marrow concentrate: evaluation of aspirate quality and pain. Orthop J Sports Med. 2017;5(8):232596711772439. https://doi.org/10.1177/2325967117724398.

    Article  Google Scholar 

  19. Pittenger MF. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7. https://doi.org/10.1126/science.284.5411.143.

    Article  CAS  PubMed  Google Scholar 

  20. Ricci WM, Spiguel A, McAndrew C, Gardner M. What’s new in orthopaedic trauma. JBJS. 2013;95(14):7170. Available from: https://journals.lww.com/jbjsjournal/Fulltext/2013/07170/What_s_New_in_Orthopaedic_Trauma.12.aspx.

    Article  Google Scholar 

  21. Friedlis MF, Centeno CJ. Performing a better bone marrow aspiration. Phys Med Rehabil Clin N Am. 2016;27(4):919–39. Available from: https://linkinghub.elsevier.com/retrieve/pii/S104796511630050X.

    Article  PubMed  Google Scholar 

  22. Marx RE, Tursun R. A qualitative and quantitative analysis of autologous human multipotent adult stem cells derived from three anatomic areas by marrow aspiration: tibia, anterior ilium, and posterior ilium. Int J Oral Maxillofac Implants. 2013;28(5):290–4. https://doi.org/10.11607/jomi.te10.

    Article  Google Scholar 

  23. Piuzzi NS, Hussain ZB, Chahla J, Cinque ME, Moatshe G, Mantripragada VP, et al. Variability in the preparation, reporting, and use of bone marrow aspirate concentrate in musculoskeletal disorders: a systematic review of the clinical orthopaedic literature. J Bone Jt Surg. 2018;100(6):517–25. Available from: http://Insights.ovid.com/crossref?an=00004623-201803210-00010.

    Article  Google Scholar 

  24. Cordeiro-Spinetti E, Taichman RS, Balduino A. The bone marrow endosteal niche: how far from the surface? The Bone Marrow Endosteal Niche. J Cell Biochem. 2015;116(1):6–11. https://doi.org/10.1002/jcb.24952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Siclari VA, Zhu J, Akiyama K, Liu F, Zhang X, Chandra A, et al. Mesenchymal progenitors residing close to the bone surface are functionally distinct from those in the central bone marrow. Bone. 2013;53(2):575–86. Available from: https://linkinghub.elsevier.com/retrieve/pii/S8756328212014317.

    Article  PubMed  Google Scholar 

  26. Hirahara AM, Panero A, Andersen WJ. An MRI analysis of the pelvis to determine the ideal method for ultrasound-guided bone marrow aspiration from the iliac crest. Am J Orthop. 2018;47(5):38. https://doi.org/10.12788/ajo.2018.0038.

    Article  Google Scholar 

  27. Hernigou J, Alves A, Homma Y, Guissou I, Hernigou P. Anatomy of the ilium for bone marrow aspiration: map of sectors and implication for safe trocar placement. Int Orthop. 2014;38(12):2585–90. https://doi.org/10.1007/s00264-014-2353-7.

    Article  PubMed  Google Scholar 

  28. Everts PA, Ferrell J, Mahoney CB, Ii GF, de Roman MI, Paul R, et al. A comparative quantification in cellularity of bone marrow aspirated with two new harvesting devices, and the non-equivalent difference between a centrifugated bone marrow concentrate and a bone marrow aspirate as biological injectates, using a bi-lateral patient model. J Stem Cell Res Ther. 2020;10:1–10.

    Google Scholar 

  29. Dallo I, Chahla J, Mitchell JJ, Pascual-Garrido C, Feagin JA, LaPrade RF. Biologic approaches for the treatment of partial tears of the anterior cruciate ligament: a current concepts review. Orthop J Sports Med. 2017;5(1):232596711668172. https://doi.org/10.1177/2325967116681724.

    Article  Google Scholar 

  30. Everts P, Flanagan G II, Rothenberg J, Mautner K. The rationale of autologously prepared bone marrow aspirate concentrate for use in regenerative medicine applications. In: Regenerative medicine. London: IntechOpen; 2020. Available from: https://www.intechopen.com/online-first/the-rationale-of-autologously-prepared-bone-marrow-aspirate-concentrate-for-use-in-regenerative-media.

    Google Scholar 

  31. Mautner K, Jerome MA, Easley K, Nanos K, Everts PA. Laboratory quantification of bone marrow concentrate components in unilateral versus bilateral posterior superior iliac spine aspiration. J Stem Cell Res Ther. 2020;466:9.

    Google Scholar 

  32. Vora A, Borg-Stein J, Nguyen RT. Regenerative injection therapy for osteoarthritis: fundamental concepts and evidence-based review. PM R. 2012;4(5S):S104–9. https://doi.org/10.1016/j.pmrj.2012.02.005.

    Article  PubMed  Google Scholar 

  33. Centeno CJ, Al-Sayegh H, Freeman MD, Smith J, Murrell WD, Bubnov R. A multi-center analysis of adverse events among two thousand, three hundred and seventy two adult patients undergoing adult autologous stem cell therapy for orthopaedic conditions. Int Orthop. 2016;40(8):1755–65. https://doi.org/10.1007/s00264-016-3162-y.

    Article  PubMed  Google Scholar 

  34. Mautner K, Bowers R, Easley K, Fausel Z, Robinson R. Functional outcomes following microfragmented adipose tissue versus bone marrow aspirate concentrate injections for symptomatic knee osteoarthritis. Stem Cells Transl Med. 2019;8(11):1149–56. https://doi.org/10.1002/sctm.18-0285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ossendorff R, Walter S, Schildberg F, Khoury M, Salzmann G. Controversies in regenerative medicine: should knee joint osteoarthritis be treated with mesenchymal stromal cells? Eur Cell Mater. 2022;43:89–111. Available from: https://www.ecmjournal.org/papers/vol43/pdf/v043a09.pdf.

    Article  Google Scholar 

  36. Centeno CJ, Al-Sayegh H, Bashir J, Goodyear S, Freeman MD. A dose response analysis of a specific bone marrow concentrate treatment protocol for knee osteoarthritis. BMC Musculoskelet Disord. 2015;16(1):258. https://doi.org/10.1186/s12891-015-0714-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muschler GF, Midura RJ. Connective tissue progenitors: practical concepts for clinical applications. Clin Orthop Relat Res. 2002;395:66–80. Available from: https://journals.lww.com/clinorthop/Fulltext/2002/02000/Connective_Tissue_Progenitors__Practical_Concepts.8.aspx.

    Article  Google Scholar 

  38. El-Kadiry AEH, Lumbao C, Salame N, Rafei M, Shammaa R. Bone marrow aspirate concentrate versus platelet-rich plasma for treating knee osteoarthritis: a one-year non-randomized retrospective comparative study. BMC Musculoskelet Disord. 2022;23(1):23. https://doi.org/10.1186/s12891-021-04910-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dulic O, Rasovic P, Lalic I, Kecojevic V, Gavrilovic G, Abazovic D, et al. Bone marrow aspirate concentrate versus platelet rich plasma or hyaluronic acid for the treatment of knee osteoarthritis. Medicina. 2021;57(11):1193. Available from: https://www.mdpi.com/1648-9144/57/11/1193.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kon E, Boffa A, Andriolo L, Di Martino A, Di Matteo B, Magarelli N, et al. Subchondral and intra-articular injections of bone marrow concentrate are a safe and effective treatment for knee osteoarthritis: a prospective, multi-center pilot study. Knee Surg Sports Traumatol Arthrosc. 2021;29(12):4232–40. https://doi.org/10.1007/s00167-021-06530-x.

    Article  PubMed  Google Scholar 

  41. Hermans J, Bierma-Zeinstra SMA, Bos PK, Verhaar JAN, Reijman M. The most accurate approach for intra-articular needle placement in the knee joint: a systematic review. Semin Arthritis Rheum. 2011;41(2):106–15. Available from: https://www.sciencedirect.com/science/article/pii/S0049017211000679.

    Article  PubMed  Google Scholar 

  42. Keeling LE, Belk JW, Kraeutler MJ, Kallner AC, Lindsay A, McCarty EC, et al. Bone marrow aspirate concentrate for the treatment of knee osteoarthritis: a systematic review. Am J Sports Med. 2022;50(8):2315–23. https://doi.org/10.1177/03635465211018837.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Everts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Everts, P.A., Dallo, I., Lana, J.F., Podesta, L. (2024). Bone Marrow Aspirate Concentrates for Knee OA. In: Kocaoglu, B., Laver, L., Girolamo, L.d., Compagnoni, R. (eds) Musculoskeletal Injections Manual. Springer, Cham. https://doi.org/10.1007/978-3-031-52603-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52603-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52602-2

  • Online ISBN: 978-3-031-52603-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics