Skip to main content

The Concept of Hippocampal Activity Restoration Using Artificial Intelligence Technologies

  • Conference paper
  • First Online:
Mathematical Modeling and Supercomputer Technologies (MMST 2023)

Abstract

Real-time processing and decoding of neural signals play a crucial role in biohybrid neuroprostheses, as they provide feedback to modulate or replace neural function. However, several technological challenges associated with this process remain unsolved. These challenges include the need for complex computation in real-time, handling large volumes of data from hundreds or thousands of channels, and extracting meaningful features to drive stimulation. To address these challenges, deep neural networks (DNN) integrated with biohybrid systems have emerged as a novel strategy. In this paper we propose an approach based on DNN for prediction of hippocampal signals based on received biological input. Proposed study is a first step in the complex task of the development of a neurohybrid chip, which allows one to restore memory functions in the damaged rodent hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chin, J.H., Vora, N.: The global burden of neurologic diseases. Neurology 83(4), 349–351 (2014)

    Article  Google Scholar 

  2. WHO: The top 10 causes of death. World Health Organization (2020)

    Google Scholar 

  3. Langa, K.M.: Cognitive aging, dementia, and the future of an aging population. In: Future Directions for the Demography of Aging: Proceedings of a Workshop, pp. 249–268. National Academies Press Washington, DC (2018)

    Google Scholar 

  4. French, B., et al.: Repetitive task training for improving functional ability after stroke. Cochrane Database Syst. Rev. (11) (2016)

    Google Scholar 

  5. Panuccio, G., Semprini, M., Natale, L., Buccelli, S., Colombi, I., Chiappalone, M.: Progress in neuroengineering for brain repair: new challenges and open issues. Brain Neurosci. Adv. 2, 2398212818776475 (2018)

    Article  Google Scholar 

  6. Famm, K.: Drug discovery: a jump-start for electroceuticals (vol 496, pg 159, 2013). Nature 496(7445), 300 (2013)

    Google Scholar 

  7. Berger, T.W., et al.: Restoring lost cognitive function. IEEE Eng. Med. Biol. Mag. 24(5), 30–44 (2005)

    Article  Google Scholar 

  8. Hampson, R., Simeral, J., Deadwyler, S.A.: Cognitive processes in replacement brain parts: a code for all reasons. Toward Replacement Parts, p. 111 (2005)

    Google Scholar 

  9. Vassanelli, S., Mahmud, M.: Trends and challenges in neuroengineering: toward “intelligent” neuroprostheses through brain-“brain inspired systems” communication. Front. Neurosci. 10, 438 (2016)

    Google Scholar 

  10. George, R., et al.: Plasticity and adaptation in neuromorphic biohybrid systems. Iscience 23(10) (2020)

    Google Scholar 

  11. Broccard, F.D., Joshi, S., Wang, J., Cauwenberghs, G.: Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems. J. Neural Eng. 14(4), 041002 (2017)

    Article  Google Scholar 

  12. Sharifshazileh, M., Burelo, K., Sarnthein, J., Indiveri, G.: An electronic neuromorphic system for real-time detection of high frequency oscillations (HFO) in intracranial EEG. Nat. Commun. 12(1), 3095 (2021)

    Article  Google Scholar 

  13. Corradi, F., Indiveri, G.: A neuromorphic event-based neural recording system for smart brain-machine-interfaces. IEEE Trans. Biomed. Circuits Syst. 9(5), 699–709 (2015)

    Article  Google Scholar 

  14. Christensen, D.V., et al.: 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Comput. Eng. 2(2), 022501 (2022)

    Article  Google Scholar 

  15. Chapin, J.K., Moxon, K.A., Markowitz, R.S., Nicolelis, M.A.: Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci. 2(7), 664–670 (1999)

    Article  Google Scholar 

  16. Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S., Schwartz, A.B.: Cortical control of a prosthetic arm for self-feeding. Nature 453(7198), 1098–1101 (2008)

    Article  Google Scholar 

  17. Hochberg, L.R., et al.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372–375 (2012)

    Article  Google Scholar 

  18. Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991)

    Article  Google Scholar 

  19. Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.P.: Instant neural control of a movement signal. Nature 416(6877), 141–142 (2002)

    Article  Google Scholar 

  20. Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. 101(51), 17849–17854 (2004)

    Article  Google Scholar 

  21. Li, Z., O’Doherty, J.E., Hanson, T.L., Lebedev, M.A., Henriquez, C.S., Nicolelis, M.A.: Unscented Kalman filter for brain-machine interfaces. PLoS ONE 4(7), e6243 (2009)

    Article  Google Scholar 

  22. Gilja, V., et al.: Clinical translation of a high-performance neural prosthesis. Nat. Med. 21(10), 1142–1145 (2015)

    Article  Google Scholar 

  23. Pandarinath, C., et al.: High performance communication by people with paralysis using an intracortical brain-computer interface. Elife 6, e18554 (2017)

    Article  Google Scholar 

  24. Farwell, L.A., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

    Article  Google Scholar 

  25. Sellers, E.W., Kubler, A., Donchin, E.: Brain-computer interface research at the university of South Florida cognitive psychophysiology laboratory: the P300 speller. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 221–224 (2006)

    Article  Google Scholar 

  26. Bell, C.J., Shenoy, P., Chalodhorn, R., Rao, R.P.: Control of a humanoid robot by a noninvasive brain-computer interface in humans. J. Neural Eng. 5(2), 214 (2008)

    Article  Google Scholar 

  27. Galán, F., et al.: A brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clin. Neurophysiol. 119(9), 2159–2169 (2008)

    Article  Google Scholar 

  28. Millán, J.D.R., Galán, F., Vanhooydonck, D., Lew, E., Philips, J., Nuttin, M.: Asynchronous non-invasive brain-actuated control of an intelligent wheelchair. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3361–3364. IEEE (2009)

    Google Scholar 

  29. Bryan, M., Nicoll, G., Thomas, V., Chung, M., Smith, J.R., Rao, R.P.: Automatic extraction of command hierarchies for adaptive brain-robot interfacing. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3691–3697. IEEE (2012)

    Google Scholar 

  30. Plata, A., et al.: Astrocytic atrophy following status epilepticus parallels reduced Ca2+ activity and impaired synaptic plasticity in the rat hippocampus. Front. Mol. Neurosci. 11, 215 (2018)

    Article  Google Scholar 

  31. Berger, T.W., et al.: A hippocampal cognitive prosthesis: multi-input, multi-output nonlinear modeling and VLSI implementation. IEEE Trans. Neural Syst. Rehabil. Eng. 20(2), 198–211 (2012)

    Article  Google Scholar 

  32. Andersen, P.: The Hippocampus Book. Oxford University Press, Oxford (2007)

    Google Scholar 

  33. Gergues, M.M., et al.: Circuit and molecular architecture of a ventral hippocampal network. Nat. Neurosci. 23(11), 1444–1452 (2020)

    Article  Google Scholar 

  34. Li, A., Li, F., Elahifasaee, F., Liu, M., Zhang, L., Initiative, A.D.N.: Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer’s disease diagnosis. Brain Imaging Behav. 1–10 (2021)

    Google Scholar 

  35. Mikhaylov, A., et al.: Neurohybrid memristive CMOS-integrated systems for biosensors and neuroprosthetics. Front. Neurosci. 14, 358 (2020)

    Article  Google Scholar 

  36. Mishchenko, M.A., Gerasimova, S.A., Lebedeva, A.V., Lepekhina, L.S., Pisarchik, A.N., Kazantsev, V.B.: Optoelectronic system for brain neuronal network stimulation. PLoS One 13(6), e0198396 (2018)

    Article  Google Scholar 

  37. Lebedeva, A., et al.: Integration technology for replacing damaged brain areas with artificial neuronal networks. In: 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR), pp. 158–161. IEEE (2020)

    Google Scholar 

  38. Lebedeva, A., et al.: Neuromorphic system development based on adaptive neuronal network to modulate synaptic transmission in hippocampus. In: 2021 Third International Conference Neurotechnologies and Neurointerfaces (CNN), pp. 57–60. IEEE (2021)

    Google Scholar 

  39. Gerasimova, S., et al.: A neurohybrid memristive system for adaptive stimulation of hippocampus. Chaos, Solitons Fractals 146, 110804 (2021)

    Article  MathSciNet  Google Scholar 

  40. Lebedeva, A., et al.: Development a cross-loop during adaptive stimulation of hippocampal neural networks by an artificial neural network. In: 2022 Fourth International Conference Neurotechnologies and Neurointerfaces (CNN), pp. 82–85. IEEE (2022)

    Google Scholar 

  41. Unakafova, V.A., Gail, A.: Comparing open-source toolboxes for processing and analysis of spike and local field potentials data. Front. Neuroinform. 13, 57 (2019)

    Article  Google Scholar 

  42. Gromov, N., Gubina, E., Levanova, T.: Loss functions in the prediction of extreme events and chaotic dynamics using machine learning approach. In: 2022 Fourth International Conference Neurotechnologies and Neurointerfaces (CNN), pp. 46–50. IEEE (2022)

    Google Scholar 

  43. Gerasimova, S., et al.: Memristive neural networks for predicting seizure activity. Sovremennye Tehnol. Med. 15(4), 30 (2023)

    Article  Google Scholar 

  44. Gerasimova, S.A., Beltyukova, A., Fedulina, A., Matveeva, M., Lebedeva, A.V., Pisarchik, A.N.: Living-neuron-based autogenerator. Sensors 23(16), 7016 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

Data collection and preprocessing was supported by Russian Science Foundation (Project No. 23-75-10099), numerical results (model training and testing) was supported by Ministry of Science and Education of Russian Federation (Contract FSWR-2021-0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana A. Levanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beltyukova, A.V. et al. (2024). The Concept of Hippocampal Activity Restoration Using Artificial Intelligence Technologies. In: Balandin, D., Barkalov, K., Meyerov, I. (eds) Mathematical Modeling and Supercomputer Technologies. MMST 2023. Communications in Computer and Information Science, vol 1914. Springer, Cham. https://doi.org/10.1007/978-3-031-52470-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52470-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52469-1

  • Online ISBN: 978-3-031-52470-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics