Skip to main content

Two-Stage Deep Learning Framework for Quality Assessment of Left Atrial Late Gadolinium Enhanced MRI Images

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Abstract

Accurate assessment of left atrial fibrosis in patients with atrial fibrillation relies on high-quality 3D late gadolinium enhancement (LGE) MRI images. However, obtaining such images is challenging due to patient motion, changing breathing patterns, or sub-optimal choice of pulse sequence parameters. Automated assessment of LGE-MRI image diagnostic quality is clinically significant as it would enhance diagnostic accuracy, improve efficiency, ensure standardization, and contributes to better patient outcomes by providing reliable and high-quality LGE-MRI scans for fibrosis quantification and treatment planning. To address this, we propose a two-stage deep-learning approach for automated LGE-MRI image diagnostic quality assessment. The method includes a left atrium detector to focus on relevant regions and a deep network to evaluate diagnostic quality. We explore two training strategies, multi-task learning, and pretraining using contrastive learning, to overcome limited annotated data in medical imaging. Contrastive Learning result shows about 4%, and 9% improvement in F1-Score and Specificity compared to Multi-Task learning when there’s limited data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colilla, S., Crow, A., Petkun, W., Singer, D.E., Simon, T., Liu, X.: Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. Am. J. Cardiol. 112(8), 1142–1147 (2013)

    Article  Google Scholar 

  2. ElMaghawry, M., Romeih, S.: DECAAF: emphasizing the importance of MRI in AF ablation. Glob. Cardiol. Sci. Pract. 2015, 8 (2015)

    Article  Google Scholar 

  3. Marrouche, N.F., et al.: Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA 311(5), 498–506 (2014)

    Article  Google Scholar 

  4. Verma, A., et al.: Approaches to catheter ablation for persistent atrial fibrillation. New England J. Med. 372(19), 1812–1822 (2015). https://doi.org/10.1056/NEJMoa1408288

    Article  Google Scholar 

  5. Oakes, R.S., et al.: Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation 119(13), 1758–1767 (2009)

    Article  Google Scholar 

  6. Caixal, G., et al.: Accuracy of left atrial fibrosis detection with cardiac magnetic resonance: correlation of late gadolinium enhancement with endocardial voltage and conduction velocity. Europace 23(3), 380–388 (2021)

    Article  Google Scholar 

  7. Lange, M., Kwan, E., Dosdall, D.J., MacLeod, R.S., Bunch, T.J., Ranjan, R.: Case report: personalized computational model guided ablation for left atrial flutter. Front. Cardiov. Med. 9, 893752 (2022)

    Article  Google Scholar 

  8. McDowell, K.S., et al.: Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation. J. Electrocardiol. 45(6), 640–645 (2012)

    Article  Google Scholar 

  9. Gräni, C., et al.: Comparison of myocardial fibrosis quantification methods by cardiovascular magnetic resonance imaging for risk stratification of patients with suspected myocarditis. J. Cardiovasc. Magn. Reson. 21, 1–11 (2019)

    Article  Google Scholar 

  10. Flett, A.S., et al.: Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC: Cardiov. Imaging 4(2), 150–156 (2011)

    Google Scholar 

  11. Spiewak, M., et al.: Comparison of different quantification methods of late gadolinium enhancement in patients with hypertrophic cardiomyopathy. Eur. J. Radiol. 74(3), e149–e153 (2010)

    Article  Google Scholar 

  12. Xu, J., et al.: Semi-supervised learning for fetal brain MRI quality assessment with ROI consistency. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 386–395. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_37

    Chapter  Google Scholar 

  13. Liao, L., et al.: Joint image quality assessment and brain extraction of fetal MRI using deep learning. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 415–424. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_40

    Chapter  Google Scholar 

  14. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  15. Khosla, P., et al.: Supervised contrastive learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 18661–18673 (2020)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Draelos, R.L., Carin, L.: Use HIResCAM instead of Grad-CAM for faithful explanations of convolutional neural networks. arXiv preprint arXiv:2011.08891 (2020)

  19. McInnes, L., Healy, J., Melville, J.: Umap: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  20. You, Y., Gitman, I., Ginsburg, B.: Large batch training of convolutional networks. arXiv preprint arXiv:1708.03888 (2017)

Download references

Acknowledgements

The National Institutes of Health supported this work under grant numbers R01HL162353.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K M Arefeen Sultan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sultan, K.M.A. et al. (2024). Two-Stage Deep Learning Framework for Quality Assessment of Left Atrial Late Gadolinium Enhanced MRI Images. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics