Skip to main content

Techno-Economic Analysis for Decentralized GH2 Power Systems

  • Chapter
  • First Online:
Green Hydrogen in Power Systems

Abstract

The global energy transition toward a sustainable low-carbon future necessitates the integration of renewable energy sources and decentralized energy systems. This chapter explores the techno-economic dimensions of decentralized green hydrogen (GH2) power systems coupled with transactive energy (TE) and peer-to-peer (P2P) energy trading markets. These systems hold promise for enhancing renewable energy penetration and establishing a resilient energy infrastructure. The integration of renewable energy, such as solar, wind, and hydro, poses challenges due to their intermittent nature. Decentralized GH2 power systems address these challenges by utilizing renewable sources for electrolytic hydrogen production, facilitating energy storage for periods of low renewable generation.

Incorporating TE and P2P trading markets into decentralized GH2 power systems optimizes energy generation, consumption, and distribution, fostering efficient use of distributed resources and demand response. A comprehensive techno-economic analysis is vital to assess the feasibility of these systems. This study presents a professional examination of the techno-economic aspects of decentralized GH2 power systems and their integration with TE and P2P trading markets. An eight-peer decentralized P2P energy trading system is analyzed, considering various energy resources and storage technologies. The alternating direction method of multipliers (ADMM) algorithm is employed for optimization. The incorporation of hydrogen storage units enhances energy flexibility and resilience. The decentralized approach enables direct transactions among peers, promoting renewable adoption, reducing reliance on centralized grids and fossil fuels, and offering cost advantages. This study contributes to the understanding of decentralized GH2 power systems and provides insights into effective integration strategies, paving the way for a sustainable and low-carbon energy future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daneshvar, M., Asadi, S., & Mohammadi-Ivatloo, B. (2021). “Overview of the grid modernization and smart grids,” Grid modernization– future energy network infrastructure: Overview, uncertainties, modelling, optimization, and analysis, pp. 1–31.

    Google Scholar 

  2. Kabiri-Renani, Y., Daneshvar, M., & Mohammadi-Ivatloo, B. (2022). Transactive energy revolution: Innovative leverage for reliable operation of modern energy networks – A critical review. IET Renewable Power Generation, 16(15), 3368–3383.

    Article  Google Scholar 

  3. Ahmadi, E., McLellan, B., Mohammadi-Ivatloo, B., & Tezuka, T. (2020). The role of renewable energy resources in sustainability of water desalination as a potential fresh-water source: An updated review. Sustainability, 12(13), 5233.

    Article  Google Scholar 

  4. Daneshvar, M., Mohammadi-Ivatloo, B., Zare, K., & Asadi, S. (2021). Transactive energy management for optimal scheduling of interconnected microgrids with hydrogen energy storage. International Journal of Hydrogen Energy, 46(30), 16267–16278.

    Article  Google Scholar 

  5. Aminlou, A., Mohammadi-Ivatloo, B., Zare, K., Razzaghi, R., & Anvari-Moghaddam, A. (2022). Peer-to-peer decentralized energy trading in industrial town considering central shared energy storage using alternating direction method of multipliers algorithm. IET Renewable Power Generation, 16(12), 2579–2589.

    Article  Google Scholar 

  6. Daneshvar, M., Mohammadi-Ivatloo, B., & Zare, K. (2022). A novel transactive energy trading model for modernizing energy hubs in the coupled heat and electricity network. Journal of Cleaner Production, 344, 131024.

    Article  Google Scholar 

  7. Dincer, I., & Aydin, M. I. (2023). New paradigms in sustainable energy systems with hydrogen. Energy Conversion and Management, 283, 116950.

    Article  Google Scholar 

  8. Zhou, Y. (2022). Low-carbon transition in smart city with sustainable airport energy ecosystems and hydrogen-based renewable-grid-storage-flexibility. Energy Reviews, 1, 100001.

    Article  Google Scholar 

  9. Hayati, M. M., Aminlou, A., Zare, K., & Abapour, M. (2023). A two-stage stochastic optimization scheduling approach for integrating renewable energy sources and deferrable demand in the spinning reserve market. In 2023 8th international conference on technology and energy management (ICTEM) (pp. 1–7). IEEE.

    Google Scholar 

  10. Lebrouhi, B., Djoupo, J., Lamrani, B., Benabdelaziz, K., & Kousksou, T. (2022). Global hydrogen development-A technological and geopolitical overview. International Journal of Hydrogen Energy, 47, 7016.

    Article  Google Scholar 

  11. Oraibi, W. A., Mohammadi-Ivatloo, B., Hosseini, S. H., & Abapour, M. (2023). Multi microgrid framework for resilience enhancement considering mobile energy storage systems and parking lots. Applied Sciences, 13(3), 1285.

    Article  Google Scholar 

  12. Oraibi, W. A., Mohammadi-Ivatloo, B., Hosseini, S. H., & Abapour, M. (2023). A resilience-oriented optimal planning of energy storage systems in high renewable energy penetrated systems. Journal of Energy Storage, 67, 107500.

    Article  Google Scholar 

  13. Abdolahinia, H., Lesani, H., & Moeini-Aghtaie, M. (2023). Decentralized transactive energy market framework under network constraints to deal with technical issues in a radial distribution network. Electric Power Systems Research, 223, 109416.

    Article  Google Scholar 

  14. Zou, Y., Xu, Y., Feng, X., Naayagi, R., & Soong, B. H. (2022). Transactive energy systems in active distribution networks: A comprehensive review. CSEE Journal of Power and Energy Systems, 8(5), 1302–1317.

    Google Scholar 

  15. Gupta, N., Prusty, B. R., Alrumayh, O., Almutairi, A., & Alharbi, T. (2022). The role of transactive energy in the future energy industry: A critical review. Energies, 15(21), 8047.

    Article  Google Scholar 

  16. Munsing, E., & Moura, S. (2018). Cybersecurity in distributed and fully-decentralized optimization: Distortions, noise injection, and ADMM. arXiv preprint arXiv:1805.11194.

    Google Scholar 

  17. Gipe, P. (2006). Renewable energy policy mechanisms. Renewable Energy.

    Google Scholar 

  18. Jenkins, N., Long, C., & Wu, J. (2015). An overview of the smart grid in Great Britain. Engineering, 1(4), 413–421.

    Article  Google Scholar 

  19. Tushar, W., Yuen, C., Mohsenian-Rad, H., Saha, T., Poor, H. V., & Wood, K. L. (2018). Transforming energy networks via peer-to-peer energy trading: The potential of game-theoretic approaches. IEEE Signal Processing Magazine, 35(4), 90–111.

    Article  Google Scholar 

  20. Zhou, Y., Wu, J., Long, C., & Ming, W. (2020). State-of-the-art analysis and perspectives for peer-to-peer energy trading. Engineering, 6(7), 739–753.

    Article  Google Scholar 

  21. Morstyn, T., Farrell, N., Darby, S. J., & McCulloch, M. D. (2018). Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants. Nature Energy, 3(2), 94–101.

    Article  Google Scholar 

  22. Shrestha, A., et al. (2019). Peer-to-peer energy trading in micro/mini-grids for local energy communities: A review and case study of Nepal. IEEE Access, 7, 131911–131928.

    Article  Google Scholar 

  23. Aminlou, A., Hayati, M. M., & Zare, K. (2023). Local peer-to-peer energy trading evaluation in micro-grids with centralized approach. In 2023 8th international conference on technology and energy management (ICTEM) (pp. 1–6).

    Google Scholar 

  24. Zhang, C., Wu, J., Zhou, Y., Cheng, M., & Long, C. (2018). Peer-to-peer energy trading in a microgrid. Applied Energy, 220, 1–12.

    Article  Google Scholar 

  25. Xia, Y., Xu, Q., Huang, Y., & Du, P. (2023). Peer-to-peer energy trading market considering renewable energy uncertainty and participants’ individual preferences. International Journal of Electrical Power & Energy Systems, 148, 108931.

    Article  Google Scholar 

  26. Mehdinejad, M., Shayanfar, H., & Mohammadi-Ivatloo, B. (2022). Peer-to-peer decentralized energy trading framework for retailers and prosumers. Applied Energy, 308, 118310.

    Article  Google Scholar 

  27. Aminlou, A., Hayati, M., & Zare, K. (2023). ADMM-based fully decentralized peer to peer energy trading considering a shared CAES in a local community. Journal of Energy Management and Technology, 100, 105021.

    Google Scholar 

  28. Suthar, S., Cherukuri, S. H. C., & Pindoriya, N. M. (2023). Peer-to-peer energy trading in smart grid: Frameworks, implementation methodologies, and demonstration projects. Electric Power Systems Research, 214, 108907.

    Article  Google Scholar 

  29. Seyfi, M., Mehdinejad, M., Mohammad-Ivatloo, B., & Shayanfar, H. (2021). Decentralized peer-to-peer energy trading for prosumers considering demand response program. In 2021 11th smart grid conference (SGC) (pp. 1–5). IEEE.

    Google Scholar 

  30. Aminlou, A., Hayati, M. M., & Zare, K. (2023). P2P energy trading in a community of individual consumers with the presence of central shared battery energy storage. In V. Vahidinasab & B. Mohammadi-Ivatloo (Eds.), Demand-side peer-to-peer energy trading (pp. 143–159). Springer International Publishing.

    Chapter  Google Scholar 

  31. Mehdinejad, M., Shayanfar, H. A., Mohammadi-Ivatloo, B., & Nafisi, H. (2022). Designing a robust decentralized energy transactions framework for active prosumers in peer-to-peer local electricity markets. IEEE Access, 10, 26743–26755.

    Article  Google Scholar 

  32. Mehdinejad, M., Shayanfar, H., & Mohammadi-Ivatloo, B. (2022). Decentralized blockchain-based peer-to-peer energy-backed token trading for active prosumers. Energy, 244, 122713.

    Article  Google Scholar 

  33. Luo, F., Dong, Z. Y., Liang, G., Murata, J., & Xu, Z. (2019). A distributed electricity trading system in active distribution networks based on multi-agent coalition and Blockchain. IEEE Transactions on Power Systems, 34(5), 4097–4108.

    Article  Google Scholar 

  34. Morstyn, T., Teytelboym, A., & Mcculloch, M. D. (2019). Bilateral contract networks for peer-to-peer energy trading. IEEE Transactions on Smart Grid, 10(2), 2026–2035.

    Article  Google Scholar 

  35. Arsad, A. Z., et al. (2022). Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions. International Journal of Hydrogen Energy, 47(39), 17285–17312.

    Article  Google Scholar 

  36. Oskouei, M. Z., et al. (2022). A critical review on the impacts of energy storage systems and demand-side management strategies in the economic operation of renewable-based distribution network. Sustainability, 14(4), 2110.

    Article  Google Scholar 

  37. Aminlou, A., Nourollahi, R., & Zare, K. (2023). Optimal scheduling of local peer-to-peer energy trading considering hydrogen storage system. In V. Vahidinasab & B. Mohammadi-Ivatloo (Eds.), Demand-side peer-to-peer energy trading (pp. 203–218). Springer International Publishing.

    Chapter  Google Scholar 

  38. Nojavan, S., Zare, K., & Mohammadi-Ivatloo, B. (2017). Application of fuel cell and electrolyzer as hydrogen energy storage system in energy management of electricity energy retailer in the presence of the renewable energy sources and plug-in electric vehicles. Energy Conversion and Management, 136, 404–417.

    Article  Google Scholar 

  39. Mirzaei, M. A., Sadeghi Yazdankhah, A., & Mohammadi-Ivatloo, B. (2019). Stochastic security-constrained operation of wind and hydrogen energy storage systems integrated with price-based demand response. International Journal of Hydrogen Energy, 44(27), 14217–14227.

    Article  Google Scholar 

  40. Nazari-Heris, M., Madadi, S., & Mohammadi-Ivatloo, B. (2018). Chapter 15: Optimal management of hydrothermal-based micro-grids employing robust optimization method. In A. F. Zobaa, S. H. E. Abdel Aleem, & A. Y. Abdelaziz (Eds.), Classical and recent aspects of power system optimization (pp. 407–420). Academic Press.

    Chapter  Google Scholar 

  41. Heydarian-Forushani, E., Golshan, M. E. H., Shafie-khah, M., & Siano, P. (2018). Optimal operation of emerging flexible resources considering sub-hourly flexible ramp product. IEEE Transactions on Sustainable Energy, 9(2), 916–929.

    Article  Google Scholar 

  42. Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning, 3(1), 1–122.

    Article  Google Scholar 

  43. “PVOutput.” (2020). Available: https://pvoutput.org/. Accessed 11 Nov 2020.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aminlou, A., Hayati, M.M., Majidi-Garehnaz, H., Biabani, H., Zare, K., Abapour, M. (2024). Techno-Economic Analysis for Decentralized GH2 Power Systems. In: Vahidinasab, V., Mohammadi-Ivatloo, B., Shiun Lim, J. (eds) Green Hydrogen in Power Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-52429-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52429-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52428-8

  • Online ISBN: 978-3-031-52429-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics