Skip to main content

Applications of Nanochitosan in Fish Disease Management

  • Chapter
  • First Online:
Nanochitosan-Based Enhancement of Fisheries and Aquaculture

Abstract

Chitosan, derived from crustacean shells, presents a biocompatible and biodegradable material with wide-ranging applications in medical fields, including drug delivery, wound healing, and tissue regeneration. By harnessing chitosan derivatives, particularly in the form of nanochitosan nanoparticles, its aqueous solubility limitation can be overcome, enabling controlled drug release and immunomodulation for therapeutic purposes. This versatile nanomaterial exhibits substantial antimicrobial properties against bacteria, viruses, and fungi, achieved through interactions with microbial cell membranes, modulation of membrane permeability, DNA binding, and potential electron transport chain modulation, rendering it a promising tool in health care and biomedicine. Moreover, nanochitosan proves effective in hindering fungal growth and contamination, offering a multifaceted approach to combat microbial infections across various contexts. In aquaculture, nanochitosan emerges as a pivotal solution for water quality management, nutrient delivery, and disease control, contributing to the growth and resilience of aquatic organisms while ensuring sustainable practices within the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Naby, F. S., Naiel, M. A. E., Al-Sagheer, A. A., & Negm, S. S. (2019). Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture, 501, 82–89. https://doi.org/10.1016/j.aquaculture.2018.11.014

    Article  CAS  Google Scholar 

  • Ahmed, F., Soliman, F. M., Adly, M. A., Soliman, H. A. M., El-Matbouli, M., & Saleh, M. (2020). In vitro assessment of the antimicrobial efficacy of chitosan nanoparticles against major fish pathogens and their cytotoxicity to fish cell lines. Journal of Fish Diseases, 43(9), 1049–1063. https://doi.org/10.1111/jfd.13212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed, F., Soliman, F. M., Adly, M. A., Soliman, H. A. M., El-Matbouli, M., & Saleh, M. (2021). Dietary chitosan nanoparticles: Potential role in modulation of rainbow trout (Oncorhynchus mykiss) antibacterial defense and intestinal immunity against enteric Redmouth disease. Marine Drugs, 19(2), 72. https://doi.org/10.3390/md19020072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahuekwe, E. F., Isibor, P. O., Oziegbe, O., Salami, A. O., Akinyosoye, A. D., Akinhanmi, F., Oyewale, J. O., Taiwo, O. S., Akinwunmi, R. A., Ajiboye, I., & Adekeye, B. T. (2023a). Nanochitosan derived from marine bacteria. In Next generation Nanochitosan (pp. 147–168).

    Google Scholar 

  • Ahuekwe, E. F., Isibor, P. O., Akinhanmi, F., Ajiboye, I., Salami, A. O., Adekeye, B. T., Akinpelu, S. O., Kuye, A. D., Bello, A. O., Oyewale, J. O., & George, D. Z. (2023b). Utilization of nanochitosan in the sterilization of ponds and water treatment for aquaculture. In Next Generation Nanochitosan (pp. 301–338).

    Google Scholar 

  • Alajangi, H. K., Kaur, M., Sharma, A., Rana, S., Thakur, S., Chatterjee, M., Singla, N., Jaiswal, P. K., Singh, G., & Barnwal, R. P. (2022). Blood–brain barrier: Emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Molecular Brain, 15(1), 49. https://doi.org/10.1186/s13041-022-00937-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., & Acosta, N. (2021). Chitosan: An overview of its properties and applications. Polymers, 13(19), 3256. https://doi.org/10.3390/polym13193256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asl, F. D., Mousazadeh, M., Taji, S., Bahmani, A., Khashayar, P., Azimzadeh, M., & Mostafavi, E. (2023). Nano drug-delivery systems for management of AIDS: Liposomes, dendrimers, gold and silver nanoparticles. Nanomedicine, 18(3), 279–302. https://doi.org/10.2217/nnm-2022-0248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chellapandian, H., Jeyachandran, S., Ilangovan, S., & Aseervatham, S. B. (2023). Nanochitosan for the production of more effective fish feed for aquaculture. In Next Generation Nanochitosan (pp. 339–348). Academic Press.

    Google Scholar 

  • Chen, H., Xing, X., Tan, H., Jia, Y., Zhou, T., Chen, Y., Ling, Z., & Hu, X. (2017). Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Materials Science and Engineering: C., 70, 287–295. https://doi.org/10.1016/j.msec.2016.08.086

    Article  CAS  PubMed  Google Scholar 

  • Cota-Arriola, O., Plascencia-Jatomea, M., Lizardi-Mendoza, J., Robles-Sánchez, R. M., Ezquerra-Brauer, J.M., Ruíz-García, J., Vega-Acosta, J. R., & Cortez-Rocha, M. O. (2016). Preparation of chitosan matrices with ferulic acid: Physicochemical characterization and relationship on the growth of Aspergillus parasiticus. CyTA - Journal of Food 1–10. https://doi.org/10.1080/19476337.2016.1213317

  • Covarrubias, C., Trepiana, D., & Corral, C. (2018). Synthesis of hybrid copper-chitosan nanoparticles with antibacterial activity against cariogenic Streptococcus mutans. Dental Materials Journal, 37(3), 379–384. https://doi.org/10.4012/dmj.2017-195

    Article  PubMed  Google Scholar 

  • Dawood, M. A. O., Gewaily, M. S., Soliman, A. A., Shukry, M., Amer, A. A., Younis, E. M., Abdel-Warith, A.-W. A., Van Doan, H., Saad, A. H., Aboubakr, M., Abdel-Latif, H. M. R., & Fadl, S. E. (2020). Marine-derived chitosan nanoparticles improved the intestinal histo-morphometrical features in association with the health and immune response of grey mullet (Liza ramada). Marine Drugs, 18(12), 611. https://doi.org/10.3390/md18120611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Sousa Victor, R., Da Cunha, M., Santos, A., Viana De Sousa, B., De Araújo Neves, G., De Lima, N., Santana, L., & Rodrigues Menezes, R. (2020). A review on Chitosan’s uses as biomaterial: Tissue engineering, drug delivery systems and cancer treatment. Materials, 13(21), 4995. https://doi.org/10.3390/ma13214995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai, K., McManus, J. M., & Sharifi, N. (2021). Hormonal therapy for prostate cancer. Endocrine Reviews, 42(3), 354–373. https://doi.org/10.1210/endrev/bnab002

    Article  PubMed  PubMed Central  Google Scholar 

  • Dilnawaz, F., Acharya, S., & Kanungo, A. (2023). A clinical perspective of chitosan nanoparticles for infectious disease management. Polymer Bulletin. https://doi.org/10.1007/s00289-023-04755-z

  • Elabd, H., Mahboub, H. H., Salem, S. M. R., Abdelwahab, A. M., Alwutayd, K. M., Shaalan, M., Ismail, S. H., Abdelfattah, A. M., Khalid, A., Mansour, A. T., Hamed, H. S., & Youssuf, H. (2023). Nano-curcumin/chitosan modulates growth, biochemical, immune, and antioxidative profiles, and the expression of related genes in Nile tilapia, Oreochromis niloticus. Fishes, 8(7), 333. https://doi.org/10.3390/fishes8070333

    Article  Google Scholar 

  • El-Naggar, M., et al. (2022). Applications of chitosan and chitosan nanoparticles in fish aquaculture. Egyptian Journal of Aquatic Biology and Fisheries, 26(1), 23–43. https://doi.org/10.21608/ejabf.2022.213365

    Article  Google Scholar 

  • Fajardo, C., Martinez-Rodriguez, G., Blasco, J., Mancera, J. M., Thomas, B., & De Donato, M. (2022). Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. Aquaculture and Fisheries, 7(2), 185–200.

    Google Scholar 

  • Feng, S.-S., Mei, L., Anitha, P., Gan, C. W., & Zhou, W. (2009). Poly(lactide)–vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of docetaxel. Biomaterials, 30(19), 3297–3306. https://doi.org/10.1016/j.biomaterials.2009.02.045

    Article  CAS  PubMed  Google Scholar 

  • Gaglio, S. C., Perduca, M., Zipeto, D., & Bardi, G. (2023). Efficiency of chitosan nanocarriers in vaccinology for mucosal immunization. Vaccine, 11(8), 1333. https://doi.org/10.3390/vaccines11081333

    Article  CAS  Google Scholar 

  • Ghattas, M., Dwivedi, G., Lavertu, M., & Alameh, M.-G. (2021). Vaccine technologies and platforms for infectious diseases: Current progress, challenges, and opportunities. Vaccine, 9(12), 1490. https://doi.org/10.3390/vaccines9121490

    Article  CAS  Google Scholar 

  • Hernández-Lauzardo, A. N., Bautista-Baños, S., Velázquez-del Valle, M. G., Méndez-Montealvo, M. G., Sánchez-Rivera, M. M., & Bello-Pérez, L. A. (2008). Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Carbohydrate Polymers, 73(4), 541–547. https://doi.org/10.1016/j.carbpol.2007.12.020

    Article  CAS  PubMed  Google Scholar 

  • Ing, L. Y., Zin, N. M., Sarwar, A., & Katas, H. (2012). Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International Journal of Biomaterials, 2012, 1–9. https://doi.org/10.1155/2012/632698

    Article  CAS  Google Scholar 

  • Jana, S., & Jana, S. (Eds.). (2019). Functional chitosan: Drug delivery and biomedical applications. Springer.

    Google Scholar 

  • Janakiraman, K., Krishnaswami, V., Rajendran, V., Natesan, S., & Kandasamy, R. (2018). Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Materials Today Communications, 17, 200–213. https://doi.org/10.1016/j.mtcomm.2018.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavitha Sankar, P. C., Rajmohan, G., & Rosemary, M. J. (2017). Physico-chemical characterisation and biological evaluation of freeze dried chitosan sponge for wound care. Materials Letters, 208, 130–132. https://doi.org/10.1016/j.matlet.2017.05.010

    Article  CAS  Google Scholar 

  • Khairy, A. M., Tohamy, M. R. A., Zayed, M. A., Mahmoud, S. F., El-Tahan, A. M., El-Saadony, M. T., & Mesiha, P. K. (2022). Eco-friendly application of nano-chitosan for controlling potato and tomato bacterial wilt. Saudi Journal of Biological Sciences, 29(4), 2199–2209. https://doi.org/10.1016/j.sjbs.2021.11.041

    Article  CAS  PubMed  Google Scholar 

  • Kheiri, A., Moosawi Jorf, S. A., Malihipour, A., Saremi, H., & Nikkhah, M. (2017). Synthesis and characterization of chitosan nanoparticles and their effect on fusarium head blight and oxidative activity in wheat. International Journal of Biological Macromolecules, 102, 526–538. https://doi.org/10.1016/j.ijbiomac.2017.04.034

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Moya, F., Suarez-Fernandez, M., & Lopez-Llorca, L. (2019). Molecular mechanisms of chitosan interactions with fungi and plants. International Journal of Molecular Sciences, 20(2), 332. https://doi.org/10.3390/ijms20020332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamo, T., Moseman, E. A., Kolishetti, N., Salvador-Morales, C., Shi, J., Kuritzkes, D. R., Langer, R., Andrian, U. V., & Farokhzad, O. C. (2010). Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine, 5(2), 269–285. https://doi.org/10.2217/nnm.10.1

    Article  CAS  PubMed  Google Scholar 

  • Meng, Q., Sun, Y., Cong, H., Hu, H., & Xu, F.-J. (2021). An overview of chitosan and its application in infectious diseases. Drug Delivery and Translational Research, 11(4), 1340–1351. https://doi.org/10.1007/s13346-021-00913-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MikuÅ¡ová, V., & MikuÅ¡, P. (2021). Advances in chitosan-based nanoparticles for drug delivery. International Journal of Molecular Sciences, 22(17), 9652. https://doi.org/10.3390/ijms22179652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed, M., Syeda, J., Wasan, K., & Wasan, E. (2017). An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 9(4), 53. https://doi.org/10.3390/pharmaceutics9040053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin-Crini, N., Lichtfouse, E., Torri, G., & Crini, G. (2019). Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environmental Chemistry Letters, 17(4), 1667–1692. https://doi.org/10.1007/s10311-019-00904-x

    Article  CAS  Google Scholar 

  • MubarakAli, D., LewisOscar, F., Gopinath, V., Alharbi, N. S., Alharbi, S. A., & Thajuddin, N. (2018). An inhibitory action of chitosan nanoparticles against pathogenic bacteria and fungi and their potential applications as biocompatible antioxidants. Microbial Pathogenesis, 114, 323–327. https://doi.org/10.1016/j.micpath.2017.11.043

    Article  CAS  PubMed  Google Scholar 

  • Nami, S., Aghebati-Maleki, A., & Aghebati-Maleki, L. (2021). Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI Journal, 20:Doc562; ISSN 1611-2156. https://doi.org/10.17179/EXCLI2020-3068

  • Nasr-Eldahan, S., Nabil-Adam, A., Shreadah, M. A., Maher, A. M., & El-Sayed Ali, T. (2021). A review article on nanotechnology in aquaculture sustainability as a novel tool in fish disease control. Aquaculture International, 29, 1459–1480.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng, S. W., Selvarajah, G. T., Hussein, M. Z., Yeap, S. K., & Omar, A. R. (2020). In vitro evaluation of curcumin-encapsulated chitosan nanoparticles against feline infectious peritonitis virus and pharmacokinetics study in cats. BioMed Research International, 2020, 1–18. https://doi.org/10.1155/2020/3012198

    Article  CAS  Google Scholar 

  • Okeke, E. S., Chukwudozie, K. I., Nyaruaba, R., Ita, R. E., Oladipo, A., Ejeromedoghene, O., Atakpa, E. O., Agu, C. V., & Okoye, C. O. (2022). Antibiotic resistance in aquaculture and aquatic organisms: A review of current nanotechnology applications for sustainable management. Environmental Science and Pollution Research, 29(46), 69241–69274. https://doi.org/10.1007/s11356-022-22319-y

    Article  CAS  PubMed  Google Scholar 

  • Olaniyan, O. T., Adetunji, C. O., Dare, A., Ajayi, O. O., & Adeniyi, M. J. (2023). Roles of nanochitosan and polymeric chitosan for the protection of farmed fish against disease-causing pathogens. In Next generation nanochitosan (pp. 287–294). Elsevier. https://doi.org/10.1016/B978-0-323-85593-8.00016-3

  • Onugwu, A. L., Nwagwu, C. S., Onugwu, O. S., Echezona, A. C., Agbo, C. P., Ihim, S. A., Emeh, P., Nnamani, P. O., Attama, A. A., & Khutoryanskiy, V. V. (2023). Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. Journal of Controlled Release, 354, 465–488. https://doi.org/10.1016/j.jconrel.2023.01.018

    Article  CAS  PubMed  Google Scholar 

  • Osarenotor, O., & Adetunji, C. O. (2023). Application of nanochitosan in water filtration with high relevance in aquaculture. In Next generation nanochitosan (pp. 295–300). Elsevier. Academic Press.

    Google Scholar 

  • Pilon, L., Spricigo, P. C., Miranda, M., De Moura, M. R., Assis, O. B. G., Mattoso, L. H. C., & Ferreira, M. D. (2015). Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not affecting quality attributes. International Journal of Food Science & Technology, 50(2), 440–448. https://doi.org/10.1111/ijfs.12616

    Article  CAS  Google Scholar 

  • Qin, C., Li, H., Xiao, Q., Liu, Y., Zhu, J., & Du, Y. (2006). Water-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers, 63(3), 367–374. https://doi.org/10.1016/j.carbpol.2005.09.023

    Article  CAS  Google Scholar 

  • Rajeshkumar, S., Venkatesan, C., Sarathi, M., Sarathbabu, V., Thomas, J., Anver Basha, K., & Sahul Hameed, A. S. (2009). Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish & Shellfish Immunology, 26(3), 429–437. https://doi.org/10.1016/j.fsi.2009.01.003

    Article  CAS  Google Scholar 

  • Rhee, J. H. (2020). Current and new approaches for mucosal vaccine delivery. In Mucosal vaccines (pp. 325–356). Elsevier. https://doi.org/10.1016/B978-0-12-811924-2.00019-5

  • Rozman, N. A. S., Tong, W. Y., Leong, C. R., Tan, W. N., Hasanolbasori, M. A., & Abdullah, S. Z. (2019). Potential antimicrobial applications of chitosan nanoparticles (ChNP). Journal of Microbiology and Biotechnology, 29(7), 1009–1013. https://doi.org/10.4014/jmb.1904.04065

    Article  CAS  PubMed  Google Scholar 

  • Sadoughi, F., Mansournia, M. A., & Mirhashemi, S. M. (2020). The potential role of chitosan-based nanoparticles as drug delivery systems in pancreatic cancer. IUBMB Life, 72(5), 872–883.

    Article  CAS  PubMed  Google Scholar 

  • Safer, A.-M., & Leporatti, S. (2021). Chitosan nanoparticles for antiviral drug delivery: A novel route for COVID-19 treatment. International Journal of Nanomedicine, 16, 8141–8158. https://doi.org/10.2147/IJN.S332385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A., Raliya, R., & Biswas, P. (2015). Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules, 75, 346–353. https://doi.org/10.1016/j.ijbiomac.2015.01.027

    Article  CAS  PubMed  Google Scholar 

  • Scutera, S., Argenziano, M., Sparti, R., Bessone, F., Bianco, G., Bastiancich, C., Castagnoli, C., Stella, M., Musso, T., & Cavalli, R. (2021). Enhanced antimicrobial and antibiofilm effect of new colistin-loaded human albumin nanoparticles. Antibiotics, 10(1), 57. https://doi.org/10.3390/antibiotics10010057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheikhzadeh, N., Kouchaki, M., Mehregan, M., Tayefi-Nasrabadi, H., Divband, B., Khataminan, M., Khani Oushani, A., & Shabanzadeh, S. (2017). Influence of nanochitosan/zeolite composite on growth performance, digestive enzymes and serum biochemical parameters in rainbow trout (Oncorhynchus mykiss). Aquaculture Research., 48(12), 5955–5964. https://doi.org/10.1111/are.13418

    Article  CAS  Google Scholar 

  • Shohani, S., Mondanizadeh, M., Abdoli, A., Khansarinejad, B., Salimi-Asl, M., Ardestani, M., Ghanbari, M., Haj, M., & Zabihollahi, R. (2017). Trimethyl chitosan improves anti-HIV effects of Atripla as a new nanoformulated drug. Current HIV Research, 15(1), 56–65. https://doi.org/10.2174/1570162X14666161216142806

    Article  CAS  PubMed  Google Scholar 

  • Sivanesan, I., Muthu, M., Gopal, J., Hasan, N., Kashif Ali, S., Shin, J., & Oh, J.-W. (2021). Nanochitosan: Commemorating the metamorphosis of an ExoSkeletal waste to a versatile nutraceutical. Nanomaterials, 11(3), 821. https://doi.org/10.3390/nano11030821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soh, S. H., Shim, S., Im, Y. B., Park, H.-T., Cho, C.-S., & Yoo, H. S. (2019). Induction of Th2-related immune responses and production of systemic IgA in mice intranasally immunized with Brucella abortus malate dehydrogenase loaded chitosan nanoparticles. Vaccine, 37(12), 1554–1564. https://doi.org/10.1016/j.vaccine.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  • Sohail, A., Khan, R. U., Khan, M., Khokhar, M., Ullah, S., Ali, A., Bilal, H., Khattak, S., Khan, M., & Ahmad, B. (2021). Comparative efficacy of amphotericin B-loaded chitosan nanoparticles and free amphotericin B drug against Leishmania tropica. Bulletin of the National Research Centre., 45(1), 187. https://doi.org/10.1186/s42269-021-00644-5

    Article  Google Scholar 

  • Venugopal, V., & Sasidharan, A. (2021). Seafood industry effluents: Environmental hazards, treatment and resource recovery. Journal of Environmental Chemical Engineering., 9(2), 104758. https://doi.org/10.1016/j.jece.2020.104758

    Article  CAS  Google Scholar 

  • Wu, Y., Rashidpour, A., Almajano, M. P., & Metón, I. (2020). Chitosan-based drug delivery system: Applications in fish biotechnology. Polymers, 12(5), 1177. https://doi.org/10.3390/polym12051177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz Atay, H. (2019). Antibacterial activity of chitosan-based systems. In S. Jana & S. Jana (Eds.), Functional chitosan (pp. 457–489). Springer Singapore. https://doi.org/10.1007/978-981-15-0263-7_15

    Chapter  Google Scholar 

  • Zamboulis, A., Nanaki, S., Michailidou, G., Koumentakou, I., Lazaridou, M., Ainali, N. M., Xanthopoulou, E., & Bikiaris, D. N. (2020). Chitosan and its derivatives for ocular delivery formulations: Recent advances and developments. Polymers, 12(7), 1519. https://doi.org/10.3390/polym12071519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, D., Yu, S., Sun, B., Gao, S., Guo, S., & Zhao, K. (2018). Biomedical applications of chitosan and its derivative nanoparticles. Polymers, 10(4), 462. https://doi.org/10.3390/polym10040462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franklyn Nonso Iheagwam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iheagwam, F.N., Amuji, D.N., Mamudu, C.O. (2024). Applications of Nanochitosan in Fish Disease Management. In: Isibor, P.O., Adeogun, A.O., Enuneku, A.A. (eds) Nanochitosan-Based Enhancement of Fisheries and Aquaculture. Springer, Cham. https://doi.org/10.1007/978-3-031-52261-1_5

Download citation

Publish with us

Policies and ethics