Skip to main content

Nanochitosan Synthesis, Optimization, and Characterization

  • Chapter
  • First Online:
Nanochitosan-Based Enhancement of Fisheries and Aquaculture
  • 36 Accesses

Abstract

The strategic exploration of optimizing nanochitosan for fisheries and aquaculture signifies a comprehensive effort to elevate its effectiveness in tackling the daunting productivity challenges confronting the fisheries sector. Translating laboratory-scale synthesis to large-scale production is a common hurdle. Maintaining the same properties and performance of nanochitosan at a larger scale requires careful consideration of the production process and conditions. Achieving consistent and reproducible synthesis methods for nanochitosan is also challenging. Variations in raw materials, reaction conditions, and equipment can lead to differences in the properties of the nanochitosan produced.This chapter presents promising optimization strategies that leverage on precise control over synthesis methods, utilizing sophisticated techniques such as acid hydrolysis, ionic gelation, nanoprecipitation, and various advanced approaches. Within these intricate processes, nanochitosan is carefully tailored to manifest specific properties that prove advantageous for diverse applications within aquaculture. Parameters like particle size, stability, and surface modifications are rigorously scrutinized during the optimization process, ensuring that nanochitosan assumes multifaceted functionalities. These functionalities encompass but are not limited to drug delivery mechanisms, prevention of diseases, enhancement of fish feed mixtures, and purification of water resources. The optimization process represents a nuanced understanding of the intricate interrelationship between the properties of nanochitosan and the stringent requirements of aquaculture practices. This depth of comprehension is indispensable for formulating solutions that are not only efficient but also sustainable, thus contributing significantly to the advancement of fisheries and aquaculture practices on a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, Q. (2019). Understanding the UV-vis spectroscopy for nanoparticles. Journal of Nanomaterials & Molecular Nanotechnology, 8, 3. https://doi.org/10.4172/2324-8777.1000268

    Article  Google Scholar 

  • Agarwal, N., Nair, M. S., Mazumder, A., & Poluri, K. M. (2018). Chapter 3 – Characterization of nanomaterials using nuclear magnetic resonance spectroscopy. In S. M. Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, & S. Thomas (Eds.), Micro and nano technologies, characterization of nanomaterials (pp. 61–102). Woodhead Publishing. ISBN 9780081019733.

    Chapter  Google Scholar 

  • Bhatia, A., Shard, P., Chopra, D., & Mishra, T. (2011). Chitosan nanoparticles as carrier of immunorestoratory plant extract: Synthesis, characterization and immunorestoratory efficacy. International Journal of Drug Delivery, 3, 381–385.

    CAS  Google Scholar 

  • Cardoso, V. M., Ferreira, L. M. B., Comparetti, E. J., Sampaio, I., Ferreira, N. N., Miranda, R. R., & Zucolotto, V. (2022). Chapter 4 – Stimuli-responsive polymeric nanoparticles as controlled drug delivery systems. In V. Gajbhiye, K. R. Gajbhiye, & S. Hong (Eds.), Stimuli-responsive nanocarriers (pp. 87–117). Academic Press. ISBN 9780128244562.

    Chapter  Google Scholar 

  • Chhantyal, P. (2022). The use of X-ray diffraction for nanoparticle characterization. The State of Scientific Marketing ’23 Market Report. https://www.azooptics.com/Article.aspx?ArticleID=2180

  • Cho, Y., Jun, T. K., & Park, H. J. (2012). Preparation, characterization, and protein loading properties of N-acyl chitosan nanoparticles. Journal of Applied Polymer Science, 124, 1366–1371. https://doi.org/10.1002/app.34931

    Article  CAS  Google Scholar 

  • Ding, Y., & Kan, J. (2017). Optimization and characterization of high pressure homogenization produced chemically modified starch nanoparticles. Journal of Food Science and Technology, 54(13), 4501–4509. https://doi.org/10.1007/s13197-017-2934-8. Epub 2017 Oct 26. PMID: 29184257; PMCID: PMC5686031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos, A. M., Carvalho, S. G., Ferreira, L. M. B., Chorilli, M., & Gremião, M. P. D. (2022). Understanding the role of electrostatic interactions on the association of 5-fluorouracil to chitosan-TPP nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 640, 128417. ISSN 0927-7757.

    Article  Google Scholar 

  • Dubey, S., Mody, N., Sharma, R., Agrawal, U., & Vyas, S. P. (2016). Chapter 4 – Nanobiomaterials: Novel nanoplatforms for protein and peptide delivery. In A. M. Grumezescu (Ed.), Nanobiomaterials in drug delivery (pp. 111–146). William Andrew Publishing. ISBN 9780323428668.

    Chapter  Google Scholar 

  • Eid, M. M. (2022). Characterization of nanoparticles by FTIR and FTIR-microscopy. In Handbook of consumer nanoproducts. Springer. https://doi.org/10.1007/978-981-16-8698-6_89

    Chapter  Google Scholar 

  • El-Naggar, M. M., Abou-Elmagd, W. S. I., Suloma, A. M., El-Shabaka, H. A., Khalil, M. T., & Abd El-Rahman, F. A. A. (2019). Optimization and physicochemical characterization of chitosan and chitosan nanoparticles extracted from the crayfish Procambarus clarkii wastes. Journal of Shellfish Research, 38(2), 385–395. https://doi.org/10.2983/035.038.0220

    Article  Google Scholar 

  • El-Naggar, M. M., Haneen, D. S. A., Mehany, A. B. M., & Khalil, M. T. (2020). New synthetic chitosan hybrids bearing some heterocyclic moieties with potential activity as anticancer and apoptosis inducers. International Journal of Biological Macromolecules, 150, 1323–1330. https://doi.org/10.1016/j.ijbiomac.2019.10.142

    Article  CAS  PubMed  Google Scholar 

  • El-Naggar, M. M., Salah, S., El-Shabaka, H. A., Abd El-Rahman, F. A. A., Khalil, M. T., & Suloma, A. (2021). Efficacy of dietary chitosan and chitosan nanoparticles supplementation on health status of Nile tilapia, Oreochromis niloticus (L.). Aquaculture Reports, 19, 100628. https://doi.org/10.1016/j.aqrep.2021.100628

    Article  Google Scholar 

  • El-Naggar, M. M., Medhat, F., & Taha, A. (2022). Applications of chitosan and chitosan nanoparticles in fish aquaculture. Egyptian Journal Of Aquatic Biology And Fisheries, 26(1), 23–43. https://doi.org/10.21608/ejabf.2022.213365

    Article  Google Scholar 

  • Elsawy, M. A., Saad, G. A., & Sayed, A. M. (2016). Mechanical, thermal, and dielectric properties of poly(lactic acid)/chitosan nanocomposites. Polymer Engineering and Science, 56, 987–994. https://doi.org/10.1002/pen.24328

    Article  CAS  Google Scholar 

  • El-Sayed, A.-F. M. (2019). Tilapia culture. Academic Press. https://doi.org/10.1016/C2017-0-04085-5

    Book  Google Scholar 

  • Fadlaoui, S., El Asri, O., Mohammed, L., Sihame, A., Omari, A., & Melhaoui, M. (2019). Isolation and characterization of chitin from shells of the freshwater crab Potamon algeriense. Progress on Chemistry and Application of Chitin and its Derivatives, XXIV, 23–35. https://doi.org/10.15259/PCACD.24.002

    Article  Google Scholar 

  • Fatfat, Z., Karam, M., Maatouk, B., Fahs, D., & Gali-Muhtasib, H. (2023). Chapter 7 – Nanoliposomes as safe and efficient drug delivery nanovesicles. In A. K. Nayak, M. S. Hasnain, B. Laha, & S. Maiti (Eds.), Advanced and modern approaches for drug delivery (pp. 159–197). Academic Press. ISBN 9780323916684.

    Chapter  Google Scholar 

  • Ferreira, L. M. B., dos Santos, A. M., Boni, F. I., dos Santos, K. C., Robusti, L. M. G., de Souza, M. P. C., Ferreira, N. N., Carvalho, S. G., Cardoso, V. M. O., Chorilli, M., Cury, B. S. F., de Godoi, D. R. M., & Gremião, M. P. D. (2020). Design of chitosan-based particle systems: A review of the physicochemical foundations for tailored properties. Carbohydrate Polymers, 250, 116968. ISSN 0144-8617.

    Article  CAS  PubMed  Google Scholar 

  • Fonseca, L. R., Santos, T. P., Czaikoski, A., & Cunha, R. L. (2020). Modulating properties of polysaccharides nanocomplexes from enzymatic hydrolysis of chitosan. Food Research International, 137, 109642. ISSN 0963-9969.

    Article  Google Scholar 

  • Ghadi, A., Mahjoub, S., Tabandeh, F., & Talebnia, F. (2014). Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering. Caspian Journal of Internal Medicine, 5(3), 156–161. PMID: 25202443; PMCID: PMC4143737.

    PubMed  PubMed Central  Google Scholar 

  • Ghannam, H., Talab, A. S., Dolganova, N. V., Hussein, A. M. S., & Abdelmaguid, N. M. (2016). Characterization of chitosan extracted from different crustacean shell wastes. Journal of Applied Sciences, 16, 454–461.

    Article  CAS  Google Scholar 

  • Gouadec, G., & Colomban, P. (2007). Raman spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Progress in Crystal Growth and Characterization of Materials, 53(1), 1–56. ISSN 0960-8974.

    Article  CAS  Google Scholar 

  • Hao, R., Xing, R., Xu, Z., Hou, Y., Gao, S., & Sun, S. (2010). Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Advanced Materials, 22, 2729–2742.

    Article  CAS  PubMed  Google Scholar 

  • Hejjaji, E. M. A., Smith, A. M., & Morris, G. A. (2018). Evaluation of the mucoadhesive properties of chitosan nanoparticles prepared using different chitosan to tripolyphosphate (CS:TPP) ratios. International Journal of Biological Macromolecules, 120, 1610–1617. https://doi.org/10.1016/j.ijbiomac.2018.09.185

    Article  CAS  PubMed  Google Scholar 

  • Hijazi, N., Le Moigne, N., Rodier, E., Sauceau, M., Vincent, T., Benezet, J. C., & Fages, J. (2019). Biocomposite films based on poly(lactic acid) and chitosan nanoparticles: Elaboration, microstructural and thermal characterization. Polymer Engineering and Science, 59, E350–E360. https://doi.org/10.1002/pen.24983

    Article  CAS  Google Scholar 

  • Hu, Y., Jiang, X., Ding, Y., Ge, H., Yuan, Y., & Yang, C. (2002). Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials, 23, 3193–3201. https://doi.org/10.1016/S0142-9612(02)00071-6

    Article  CAS  PubMed  Google Scholar 

  • Huang, G., Lu, C., & Yang, H. (2019). Chapter 3 – Magnetic nanomaterials for magnetic bioanalysis. In X. Wang & X. Chen (Eds.), Micro and nano technologies, novel nanomaterials for biomedical, environmental and energy applications (pp. 89–109). Elsevier. ISBN 9780128144978.

    Chapter  Google Scholar 

  • Jang, M. K., Kong, B. G., Jeong, Y. I., Lee, C. H., & Nah, J. W. (2004). Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. Journal of Polymer Science Part A: Polymer Chemistry, 42, 3423–3432.

    Article  CAS  Google Scholar 

  • Kaya, M., Sargin, I., Tozak, K. O., Baran, T., Erdogan, S., & Sezen, G. (2013). Chitin extraction and characterization from Daphnia magna resting eggs. International Journal of Biological Macromolecules, 61, 459–464.

    Article  CAS  PubMed  Google Scholar 

  • Kaya, M., Baran, T., Mentes, A., Asaroglu, M., Sezen, G., & Tozak, J. O. (2014). Extraction and characterization of α-chitin and chitosan from six different aquatic invertebrates. Food Biophysics, 9, 145–157.

    Article  Google Scholar 

  • Klapetek, P., Valtr, M., Nečas, D., Salyk, O., & Dzik, P. (2011). Atomic force microscopy analysis of nanoparticles in non-ideal conditions. Nanoscale Research Letters, 6, 514. http://www.nanoscalereslett.com/content/6/1/514

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, A., Vimal, A., & Kumar, A. (2016). Why chitosan? From properties to perspective of mucosal drug delivery. International Journal of Biological Macromolecules, 91, 615–622.

    Article  CAS  PubMed  Google Scholar 

  • Lavall, R. L., Assis, O. B. G., & Campana-Filho, S. P. (2007). β-Chitin from the pens of Loligo sp.: Extraction and characterization. Bioresource Technology, 98, 2465–2472.

    Article  CAS  PubMed  Google Scholar 

  • Levitin, S. V., Gal’braikh, L. S., Grunin, Y. B., & Masas, D. S. (2014). Supramolecular structure of chitosan acid-hydrolysis products. Fibre Chemistry, 46(3), 147–150. https://doi.org/10.1007/s10692-014-9579-4

    Article  CAS  Google Scholar 

  • Liu, H., & Gao, C. (2009). Preparation and properties of ionically cross-linked chitosan nanoparticles. Polymers for Advanced Technologies, 20, 613–619. https://doi.org/10.1002/pat.1306

    Article  CAS  Google Scholar 

  • Loganathan, S., Valapa, R. B., Mishra, R. K., Pugazhenthi, G., & Thomas, S. (2017). Chapter 4 – Thermogravimetric analysis for characterization of nanomaterials. In S. Thomas, R. Thomas, A. K. Zachariah, & R. K. Mishra (Eds.), Micro and nano technologies, thermal and rheological measurement techniques for nanomaterials characterization (pp. 67–108). Elsevier. ISBN 9780323461399.

    Google Scholar 

  • Murakami, Y. & Shimoyama, Y. (2017). Production of nanosuspension functionalized by chitosan using supercritical fluid extraction of emulsion;The Journal of Supercritical Fluids, 128, 121-127, ISSN 0896-8446, https://doi.org/10.1016/j.supflu.2017.05.014.

    Google Scholar 

  • Nasrollahzadeh, M., Atarod, M., Sajjadi, M., Sajadi, S. M., & Issaabadi, Z. (2019). Chapter 6 – Plant-mediated green synthesis of nanostructures: Mechanisms, characterization, and applications. In M. Nasrollahzadeh, S. Mohammad Sajadi, M. Sajjadi, Z. Issaabadi, & M. Atarod (Eds.), Interface science and technology (Vol. 28, pp. 199–322). Elsevier. ISSN 1573-4285, ISBN 9780128135860.

    Google Scholar 

  • Naveen, N. R., Kurakula, M., & Gowthami, B. (2020). Process optimization by response surface methodology for preparation and evaluation of methotrexate loaded chitosan nanoparticles. Materials Today: Proceedings, 33(Part 7), 2716–2724. ISSN 2214-7853.

    Google Scholar 

  • Ngan, L. T. K., Wang, S. L., Hiep, D. M., Luong, P. M., Vui, N. T., Dinh, T. M., & Dzung, N. A. (2014). Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Research on Chemical Intermediates, 40, 2165–2175.

    Article  CAS  Google Scholar 

  • Ostolska, I., & Wisniewska, M. (2014). Application of the zeta potential measurements to explanation of colloidal Cr2O3 stability mechanism in the presence of the ionic polyamino acids. Colloid & Polymer Science, 292, 2453–2464.

    Article  CAS  Google Scholar 

  • Paulino, A. T., Simionato, J. I., Garcia, A. J., & Nozaki, J. (2006). Characterization of chitosan and chitin produced from silkworm crys-talides. Carbohydrate Polymers, 64, 98–103.

    Article  CAS  Google Scholar 

  • Ramos, A. P. (2017). Dynamic light scattering applied to nanoparticle characterization. In A. L. Da Róz, M. Ferreira, F. de Lima Leite, & O. N. Oliveira (Eds.), Micro and nano technologies, nanocharacterization techniques (pp. 99–110). William Andrew Publishing. ISBN 9780323497787.

    Chapter  Google Scholar 

  • Ribeiro, E.F.. São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, SP, 15054-000, Brazil. et al. Chitosan and crosslinked chitosan nanoparticles: Synthesis, characterization and their role as Pickering emulsifiers, https://doi.org/10.1016/j.carbpol.2020.116878 (2020).

  • Riegger, B. R., Baurer, B., Mirzayeva, A., Tovar, G. E. M., & Bach, M. (2018). Systematic approach for preparation of chitosan nanoparticles via emulsion crosslinking as potential adsorbent in waste-water treatment. Carbohydrate Polymers, 180, 46–54.

    Article  CAS  PubMed  Google Scholar 

  • Rodolfo, C., Eusébio, D., Ventura, C., Nunes, R., Florindo, H. F., Costa, D., & Sousa, Â. (2021). Design of experiments to achieve an efficient chitosan-based DNA vaccine delivery system. Pharmaceutics, 13(9), 1369. https://doi.org/10.3390/pharmaceutics13091369. PMID: 34575445; PMCID: PMC8471690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roncal, T., Oviedo, A., de Armentia, I. L., Fernández, L., & Villarán, M. C. (2007). High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydrate Research, 342(18), 2750–2756. https://doi.org/10.1016/j.carres.2007.08.023

    Article  CAS  PubMed  Google Scholar 

  • Sakuma, S., Hayashi, M., & Akashi, M. (2011). Design of nanoparticles composed of graft copolymers for oral peptide delivery. Advanced Drug Delivery Reviews, 47, 21–37.

    Article  Google Scholar 

  • Shard, P., Bhatia, A., & Sharma, D. (2014). Optimization and physicochemical parameters on synthesis of chitosan nanoparticles by ionic gelation technique. International Journal of Drug Delivery, 6, 58–63.

    Google Scholar 

  • Shi, A. M., Li, D., Wang, L. J., Li, B. Z., & Adhikari, B. (2011). Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydrate Polymers, 83, 1604–1610.

    Article  CAS  Google Scholar 

  • Shukla, S. K., Mishra, A. K., Arotiba, O. A., & Mamba, B. B. (2013). Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules, 59, 46–58. https://doi.org/10.1016/j.ijbiomac.2013.04.043

    Article  CAS  PubMed  Google Scholar 

  • Sivashankari, P. R., & Prabaharan, M. (2017). Deacetylation modification techniques of chitin and chitosan. Elsevier. https://doi.org/10.1016/B978-0-08-100230-8.00005-4

    Book  Google Scholar 

  • Sousa, Â., Faria, R., Albuquerque, T., Bhatt, H., Biswas, S., Queiroz, J. A., & Costa, D. (2020). Design of experiments to select triphenylphosphonium-polyplexes with suitable physicochemical properties for mitochondrial gene therapy. Journal of Molecular Liquids, 302, 112488. https://doi.org/10.1016/j.molliq.2020.112488

    Article  CAS  Google Scholar 

  • Thomasin, C., Merkle, H. P., & Gander, B. A. (1997). Physico-chemical parameters governing protein microencapsulation into biodegradable polyesters by coacervation. International Journal of Pharmaceutics, 147(2), 173–186.

    Article  CAS  Google Scholar 

  • Vladár, A. E., & Hodoroaba, V. (2020). Chapter 2.1.1 – Characterization of nanoparticles by scanning electron microscopy. In V.-D. Hodoroaba, W. E. S. Unger, & A. G. Shard (Eds.), Micro and nano technologies, characterization of nanoparticles (pp. 7–27). Elsevier. ISBN 9780128141823.

    Chapter  Google Scholar 

  • Wang, Y., & Li, J. (2011). Effects of chitosan nanoparticles on survival, growth and meat quality of tilapia, Oreochromis nilotica. Nanotoxicology, 5, 425–431.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Chang, Y., Yu, L., Zhang, C., Xu, X., Xue, Y., Li, Z., & Xue, C. (2013). Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba). Carbohydrate Polymers, 92, 90–97.

    Article  CAS  PubMed  Google Scholar 

  • Wijesena, R. N., Tissera, N., Kannangara, Y. Y., Lin, Y., Amaratunga, G. A. J., & De Silva, K. M. N. (2015). A method for top-down preparation of chitosan nanoparticles and nanofibers. Carbohydrate Polymers, 117, 731–738. https://doi.org/10.1016/j.carbpol.2014.10.055

    Article  CAS  PubMed  Google Scholar 

  • Wong, C. Y., Al-Salami, H., & Dass, C. R. (2020). Formulation and characterisation of insulinloaded chitosan nanoparticles capable of inducing glucose uptake in skeletal muscle cells in vitro. Journal of Drug Delivery Science and Technology, 57, 101738. https://doi.org/10.1016/j.jddst.2020.101738

    Article  CAS  Google Scholar 

  • Yanat, M., & Schroën, K. (2021). Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive and Functional Polymers, 161, 104849.

    Article  CAS  Google Scholar 

  • Yin, Y., Dang, Q., Liu, C., Yan, J., Cha, D., Yu, Z., Cao, Y., Wang, Y., & Fan, B. (2017). Itaconic acid grafted carboxymethyl chitosan and its nanoparticles: Preparation, characterization and evaluation. International Journal of Biological Macromolecules, 102, 10–18. https://doi.org/10.1016/j.ijbiomac.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H. L., Wu, S. H., Tao, Y., Zang, L. Q., & Su, Z. Q. (2010). Preparation and characterization of water-soluble chitosan nanoparticles as protein delivery system. Journal of Nanomaterials, 2010, 898910.

    Article  Google Scholar 

  • Zhao, D., Yu, S., Sun, B., Gao, S., Guo, S., & Zhao, K. (2018). Biomedical applications of chitosan and its derivative nanoparticles. Polymer, 10, 462.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Omoregie Isibor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Isibor, P.O. (2024). Nanochitosan Synthesis, Optimization, and Characterization. In: Isibor, P.O., Adeogun, A.O., Enuneku, A.A. (eds) Nanochitosan-Based Enhancement of Fisheries and Aquaculture. Springer, Cham. https://doi.org/10.1007/978-3-031-52261-1_3

Download citation

Publish with us

Policies and ethics