Skip to main content

Distance Labeling for Families of Cycles

  • Conference paper
  • First Online:
SOFSEM 2024: Theory and Practice of Computer Science (SOFSEM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14519))

  • 99 Accesses

Abstract

For an arbitrary finite family of graphs, the distance labeling problem asks to assign labels to all nodes of every graph in the family in a way that allows one to recover the distance between any two nodes of any graph from their labels. The main goal is to minimize the number of unique labels used. We study this problem for the families \(\mathcal {C}_n\) consisting of cycles of all lengths between 3 and n. We observe that the exact solution for directed cycles is straightforward and focus on the undirected case. We design a labeling scheme requiring \(\frac{n\sqrt{n}}{\sqrt{6}}+O(n)\) labels, which is almost twice less than is required by the earlier known scheme. Using the computer search, we find an optimal labeling for each \(n\le 17\), showing that our scheme gives the results that are very close to the optimum.

The first author is supported by the grant MPM no. ERC 683064 under the EU’s Horizon 2020 Research and Innovation Programme and by the State of Israel through the Center for Absorption in Science of the Ministry of Aliyah and Immigration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout the paper, \(\log \) stands for the binary logarithm.

  2. 2.

    E. Porat, private communication.

  3. 3.

    S. Alstrup, private communication.

References

  1. Abboud, A., Gawrychowski, P., Mozes, S., Weimann, O.: Near-optimal compression for the planar graph metric. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pp. 530–549. SIAM (2018)

    Google Scholar 

  2. Abiteboul, S., Alstrup, S., Kaplan, H., Milo, T., Rauhe, T.: Compact labeling scheme for ancestor queries. SIAM J. Comput. 35(6), 1295–1309 (2006)

    Article  MathSciNet  Google Scholar 

  3. Abrahamsen, M., Alstrup, S., Holm, J., Knudsen, M.B.T., Stöckel, M.: Near-optimal induced universal graphs for cycles and paths. Discret. Appl. Math. 282, 1–13 (2020)

    Article  MathSciNet  Google Scholar 

  4. Alstrup, S., Gørtz, I.L., Halvorsen, E.B., Porat, E.: Distance labeling schemes for trees. In: 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016. LIPIcs, vol. 55, pp. 132:1–132:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

    Google Scholar 

  5. Bazzaro, F., Gavoille, C.: Localized and compact data-structure for comparability graphs. Discret. Math. 309(11), 3465–3484 (2009)

    Article  MathSciNet  Google Scholar 

  6. Breuer, M.A.: Coding the vertexes of a graph. IEEE Trans. Inf. Theory IT–12, 148–153 (1966)

    Article  MathSciNet  Google Scholar 

  7. Breuer, M.A., Folkman, J.: An unexpected result on coding vertices of a graph. J. Math. Anal. Appl. 20, 583–600 (1967)

    Article  MathSciNet  Google Scholar 

  8. Cohen, E., Kaplan, H., Milo, T.: Labeling dynamic XML trees. SIAM J. Comput. 39(5), 2048–2074 (2010)

    Article  MathSciNet  Google Scholar 

  9. Eilam, T., Gavoille, C., Peleg, D.: Compact routing schemes with low stretch factor. J. Algorithms 46(2), 97–114 (2003)

    Article  MathSciNet  Google Scholar 

  10. Freedman, O., Gawrychowski, P., Nicholson, P.K., Weimann, O.: Optimal distance labeling schemes for trees. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017, pp. 185–194. ACM (2017)

    Google Scholar 

  11. Gavoille, C., Paul, C.: Optimal distance labeling for interval graphs and related graph families. SIAM J. Discret. Math. 22(3), 1239–1258 (2008)

    Article  MathSciNet  Google Scholar 

  12. Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Distrib. Comput. 16(2–3), 111–120 (2003)

    Article  Google Scholar 

  13. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algorithms 53(1), 85–112 (2004)

    Article  MathSciNet  Google Scholar 

  14. Gawrychowski, P., Uznanski, P.: Better distance labeling for unweighted planar graphs. Algorithmica 85(6), 1805–1823 (2023)

    Article  MathSciNet  Google Scholar 

  15. Graham, R.L., Pollak, H.O.: On embedding graphs in squashed cubes. In: Alavi, Y., Lick, D.R., White, A.T. (eds.) Graph Theory and Applications. Lecture Notes in Mathematics, vol. 303, pp. 99–110. Springer, Heidelberg (1972). https://doi.org/10.1007/BFb0067362

    Chapter  Google Scholar 

  16. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Discrete Math. 5(4), 596–603 (1992)

    Article  MathSciNet  Google Scholar 

  17. Korman, A., Peleg, D., Rodeh, Y.: Constructing labeling schemes through universal matrices. Algorithmica 57, 641–652 (2010)

    Article  MathSciNet  Google Scholar 

  18. Moon, J.W.: On minimal n-universal graphs. Glasgow Math. J. 7(1), 32–33 (1965)

    MathSciNet  Google Scholar 

  19. Peleg, D.: Proximity-preserving labeling schemes and their applications. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 30–41. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46784-X_5

    Chapter  Google Scholar 

  20. Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of the Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 2001, pp. 1–10. ACM (2001)

    Google Scholar 

  21. Winkler, P.M.: Proof of the squashed cube conjecture. Combinatorica 3, 135–139 (1983)

    Article  MathSciNet  Google Scholar 

  22. Distance labeling for small families of cycles, source code (2023). https://tinyurl.com/tc8nd39s

Download references

Acknowledgements

We are grateful to E. Porat for introducing the distance labeling problem to us. Our special thanks to A. Safronov for the assistance in computational experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arseny M. Shur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shur, A.M., Rubinchik, M. (2024). Distance Labeling for Families of Cycles. In: Fernau, H., Gaspers, S., Klasing, R. (eds) SOFSEM 2024: Theory and Practice of Computer Science. SOFSEM 2024. Lecture Notes in Computer Science, vol 14519. Springer, Cham. https://doi.org/10.1007/978-3-031-52113-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52113-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52112-6

  • Online ISBN: 978-3-031-52113-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics