Skip to main content

Data Reduction for Directed Feedback Vertex Set on Graphs Without Long Induced Cycles

  • Conference paper
  • First Online:
SOFSEM 2024: Theory and Practice of Computer Science (SOFSEM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14519))

Abstract

We study reduction rules for Directed Feedback Vertex Set (DFVS) on instances without long cycles. A DFVS instance without cycles longer than d naturally corresponds to an instance of d -Hitting Set, however, enumerating all cycles in an n-vertex graph and then kernelizing the resulting d -Hitting Set instance can be too costly, as already enumerating all cycles can take time \(\varOmega (n^d)\). To the best of our knowledge, the kernelization of DFVS on graphs without long cycles has not been studied in the literature, except for very restricted cases, e.g., for tournaments, in which all induced cycles are of length three. We show how to compute a kernel with at most \(2^dk^d\) vertices and at most \(d^{3d}k^d\) induced cycles of length at most d (which however, cannot be enumerated efficiently). We then study classes of graphs whose underlying undirected graphs have bounded expansion or are nowhere dense; these are very general classes of sparse graphs, containing e.g. classes excluding a minor or a topological minor. We prove that for such classes without induced cycles of length greater than d we can compute a kernel with \(\mathcal {O}_d(k)\) and \(\mathcal {O}_{d,\varepsilon }(k^{1+\varepsilon })\) vertices for any \(\varepsilon >0\), respectively, in time \(\mathcal {O}_d(n^{\mathcal {O}(1)})\) and \(\mathcal {O}_{d,\varepsilon }(n^{\mathcal {O}(1)})\), respectively, where k is the size of a minimum directed feedback vertex set. The most restricted classes we consider are planar graphs without any (induced or non-induced) long cycles. We show that strongly connected planar graphs without long cycles have bounded treewidth and hence DFVS on such graphs can be solved in time \(2^{\mathcal {O}(d)}\cdot n^{\mathcal {O}(1)}\). We finally present a new data reduction rule for general DFVS and prove that the rule together with a few standard rules subsumes all the rules applied by Bergougnoux et al. to obtain a polynomial kernel for DFVS[FVS], i.e., DFVS parameterized by the feedback vertex set number of the underlying (undirected) graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci. 76(7), 524–531 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bang-Jensen, J., Maddaloni, A., Saurabh, S.: Algorithms and kernels for feedback set problems in generalizations of tournaments. Algorithmica 76(2), 320–343 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bergenthal, M., et al.: Pace solver description: Grapa-java. In: IPEC 2022. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  4. Bergougnoux, B., Eiben, E., Ganian, R., Ordyniak, S., Ramanujan, M.: Towards a polynomial kernel for directed feedback vertex set. Algorithmica 83(5), 1201–1221 (2021)

    Article  MathSciNet  Google Scholar 

  5. Bessy, S., et al.: Kernels for feedback arc set in tournaments. JCSS 77(6), 1071–1078 (2011)

    MathSciNet  Google Scholar 

  6. Bonamy, M., Kowalik, Ł, Nederlof, J., Pilipczuk, M., Socała, A., Wrochna, M.: On directed feedback vertex set parameterized by treewidth. In: Brandstadt, A., Kohler, E., Meer, K. (eds.) WG 2018. LNCS, vol. 11159, pp. 65–78. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00256-5_6

    Chapter  Google Scholar 

  7. Chen, J., Liu, Y., Lu, S., O’sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. In: STOC 2008, pp. 177–186 (2008)

    Google Scholar 

  8. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On the hardness of losing width. Theory Comput. Syst. 54(1), 73–82 (2014)

    Article  MathSciNet  Google Scholar 

  9. Dell, H., Van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. JACM 61(4), 1–27 (2014)

    Article  MathSciNet  Google Scholar 

  10. Dirks, J., Gerhard, E., Grobler, M., Mouawad, A.E., Siebertz, S.: Data reduction for directed feedback vertex set on graphs without long induced cycles. arXiv preprint arXiv:2308.15900 (2023)

  11. Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truß, A.: Fixed-parameter tractability results for feedback set problems in tournaments. J. Discrete Algorithms 8(1), 76–86 (2010)

    Article  MathSciNet  Google Scholar 

  12. Drange, P.G., et al.: Kernelization and sparseness: the case of dominating set. In: STACS 2016, LIPIcs, vol. 47, pp. 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

    Google Scholar 

  13. Dreier, J., Mählmann, N., Siebertz, S.: First-order model checking on structurally sparse graph classes. In: STOC 2023, pp. 567–580. ACM (2023)

    Google Scholar 

  14. Eickmeyer, K., et al.: Neighborhood complexity and kernelization for nowhere dense classes of graphs. In: ICALP 2017, LIPIcs, vol. 80, pp. 63:1–63:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  15. Erdös, P., Rado, R.: Intersection theorems for systems of sets. J. London Math. Soc. 1(1), 85–90 (1960)

    Article  MathSciNet  Google Scholar 

  16. Even, G., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)

    Article  MathSciNet  Google Scholar 

  17. Fafianie, S., Kratsch, S.: A shortcut to (sun)flowers: kernels in logarithmic space or linear time. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 299–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48054-0_25

    Chapter  Google Scholar 

  18. Fellows, M.R., Kratochvíl, J., Middendorf, M., Pfeiffer, F.: The complexity of induced minors and related problems. Algorithmica 13(3), 266–282 (1995)

    Article  MathSciNet  Google Scholar 

  19. Fleischer, R., Wu, X., Yuan, L.: Experimental study of FPT algorithms for the directed feedback vertex set problem. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 611–622. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04128-0_55

    Chapter  Google Scholar 

  20. Fomin, F.V., Le, T., Lokshtanov, D., Saurabh, S., Thomassé, S., Zehavi, M.: Subquadratic kernels for implicit 3-hitting set and 3-set packing problems. TALG 15(1), 1–44 (2019)

    MathSciNet  Google Scholar 

  21. Fomin, F.V., Le, T., Lokshtanov, D., Saurabh, S., Thomasse, S., Zehavi, M.: Lossy kernelization for (implicit) hitting set problems. arXiv preprint arXiv:2308.05974 (2023)

  22. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

    Google Scholar 

  23. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. JACM 64(3), 1–32 (2017)

    Article  MathSciNet  Google Scholar 

  24. Großmann, E., Heuer, T., Schulz, C., Strash, D.: The pace 2022 parameterized algorithms and computational experiments challenge: directed feedback vertex set. In: IPEC 2022. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  25. Guruswami, V., Håstad, J., Manokaran, R., Raghavendra, P., Charikar, M.: Beating the random ordering is hard: Every ordering CSP is approximation resistant. SICOMP 40(3), 878–914 (2011)

    Article  MathSciNet  Google Scholar 

  26. Guruswami, V., Lee, E.: Simple proof of hardness of feedback vertex set. Theory Comput. 12(1), 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  27. Haas, R., Hoffmann, M.: Chordless paths through three vertices. TCS 351(3), 360–371 (2006)

    Article  MathSciNet  Google Scholar 

  28. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Heidelberg (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  29. Kreutzer, S., Ordyniak, S.: Digraph decompositions and monotonicity in digraph searching. TCS 412(35), 4688–4703 (2011)

    Article  MathSciNet  Google Scholar 

  30. Kreutzer, S., Rabinovich, R., Siebertz, S.: Polynomial kernels and wideness properties of nowhere dense graph classes. ACM Trans. Algorithms 15(2), 24:1–24:19 (2019)

    Google Scholar 

  31. Lokshtanov, D., Misra, P., Ramanujan, M., Saurabh, S., Zehavi, M.: FPT-approximation for FPT problems. In: SODA 2021, pp. 199–218. SIAM (2021)

    Google Scholar 

  32. Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: A linear time parameterized algorithm for directed feedback vertex set. CoRR abs/1609.04347 (2016)

    Google Scholar 

  33. Lokshtanov, D., Ramanujan, M.S., Saurabh, S., Sharma, R., Zehavi, M.: Wannabe bounded treewidth graphs admit a polynomial kernel for DFVS. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 523–537. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9_38

    Chapter  Google Scholar 

  34. Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion i. decompositions. Eur. J. Comb 29(3), 760–776 (2008)

    Google Scholar 

  35. Nešetřil, J., de Mendez, P.O.: On nowhere dense graphs. Eur. J. Comb. 32(4), 600–617 (2011)

    Article  MathSciNet  Google Scholar 

  36. Pilipczuk, M., Siebertz, S., Toruńczyk, S.: On the number of types in sparse graphs. In: LICS 2018, pp. 799–808. ACM (2018)

    Google Scholar 

  37. Razgon, I.: Computing minimum directed feedback vertex set in \(o*(1.9977^n)\). In: TCS, pp. 70–81. World Scientific (2007)

    Google Scholar 

  38. Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15(2), 281–288 (1995)

    Article  MathSciNet  Google Scholar 

  39. Svensson, O.: Hardness of vertex deletion and project scheduling. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM -2012. LNCS, vol. 7408, pp. 301–312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32512-0_26

    Chapter  Google Scholar 

  40. Van Bevern, R.: Towards optimal and expressive kernelization for d-hitting set. Algorithmica 70(1), 129–147 (2014)

    MathSciNet  Google Scholar 

  41. Weihe, K.: Covering trains by stations or the power of data reduction. ALEX, 1–8 (1998)

    Google Scholar 

  42. You, J., Wang, J., Cao, Y.: Approximate association via dissociation. Discret. Appl. Math. 219, 202–209 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Siebertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dirks, J., Gerhard, E., Grobler, M., Mouawad, A.E., Siebertz, S. (2024). Data Reduction for Directed Feedback Vertex Set on Graphs Without Long Induced Cycles. In: Fernau, H., Gaspers, S., Klasing, R. (eds) SOFSEM 2024: Theory and Practice of Computer Science. SOFSEM 2024. Lecture Notes in Computer Science, vol 14519. Springer, Cham. https://doi.org/10.1007/978-3-031-52113-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52113-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52112-6

  • Online ISBN: 978-3-031-52113-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics