Skip to main content

Blood Cell Image Segmentation Using Convolutional Decision Trees and Differential Evolution

  • Conference paper
  • First Online:
Advances in Computational Intelligence. MICAI 2023 International Workshops (MICAI 2023)

Abstract

Semantic segmentation is an important process in computer vision that assigns labels to the pixels of an image to divide it into regions of interest. The most used machine learning model for this problem is the Convolutional Neural Network (CNN), in which high-performance results are obtained, however, they are difficult to understand and explain, which is not very useful in fields where explainability is fundamental, as in medicine. As an alternative, there are Convolutional Decision Trees (CDT), a tool that is easy to interpret due to its intuitive and user-friendly graphic structure. In this article, a method is proposed to induce an optimized CDT with different kernel sizes using the Differential Evolution algorithm, obtaining F1-scores greater than 0.92 on a set of blood cell images for erythrocyte segmentation, a relevant task for doctors and laboratory technicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/PerceptiLabs/bacteria/tree/main.

References

  1. Barradas Palmeros, J.A., Mezura Montes, E., Acosta Mesa, H.G., Márquez Grajales, A., Rivera López, R.: Induction of convolutional decision trees with differential evolution for image segmentation. In: Proceedings: Congreso Mexicano de Inteligencia Artificial, vol. 8 (2023)

    Google Scholar 

  2. Bishop, C.M., Nasrabadi, N.M.: Pattern Recognition and Machine Learning, vol. 4. Springer, New York (2006)

    Google Scholar 

  3. Diakogiannis, F.I., Waldner, F., Caccetta, P., Wu, C.: ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote. Sens. 162, 94–114 (2020)

    Article  Google Scholar 

  4. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. NCS, Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8

    Book  Google Scholar 

  5. Finn, G.: Histología. Editorial Medica Panamericana, España (2001)

    Google Scholar 

  6. Gao, P.F., Lei, G., Huang, C.Z.: Dark-field microscopy: recent advances in accurate analysis and emerging applications. Anal. Chem. 93(11), 4707–4726 (2021)

    Article  Google Scholar 

  7. Junqueira, L.C., Carneiro, J.: Histologia básica. In: Histologia básica, pp. 512–512 (1985)

    Google Scholar 

  8. Laptev, D., Buhmann, J.M.: Convolutional decision trees for feature learning and segmentation. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 95–106. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_8

    Chapter  Google Scholar 

  9. Lateef, F., Ruichek, Y.: Survey on semantic segmentation using deep learning techniques. Neurocomputing 338, 321–348 (2019)

    Article  Google Scholar 

  10. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2021)

    Google Scholar 

  11. Molnar, C.: Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2nd edn (2022). https://christophm.github.io/interpretable-ml-book

  12. Patil, D.D., Deore, S.G.: Medical image segmentation: a review. Int. J. Comput. Sci. Mob. Comput. 2(1), 22–27 (2013)

    Google Scholar 

  13. Rivera-Lopez, R., Canul-Reich, J.: Construction of near-optimal axis-parallel decision trees using a differential-evolution-based approach. IEEE Access 6, 5548–5563 (2018)

    Article  Google Scholar 

  14. Rivera-Lopez, R., Canul-Reich, J., Mezura-Montes, E., Cruz-Chávez, M.A.: Induction of decision trees as classification models through metaheuristics. Swarm Evol. Comput. 69, 101006 (2022)

    Article  Google Scholar 

  15. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  16. Usmani, U.A., Roy, A., Watada, J., Jaafar, J., Aziz, I.A.: Enhanced reinforcement learning model for extraction of objects in complex imaging. In: Arai, K. (ed.) Intelligent Computing. LNNS, vol. 283, pp. 946–964. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-80119-9_63

    Chapter  Google Scholar 

  17. Verebes, G.S., Melchiorre, M., Garcia-Leis, A., Ferreri, C., Marzetti, C., Torreggiani, A.: Hyperspectral enhanced dark field microscopy for imaging blood cells. J. Biophotonics 6(11–12), 960–967 (2013)

    Article  Google Scholar 

  18. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

    Article  Google Scholar 

  19. Zhu, C., Ni, J., Li, Y., Gu, G.: General tendencies in segmentation of medical ultrasound images. In: 2009 Fourth International Conference on Internet Computing for Science and Engineering, pp. 113–117. IEEE (2009)

    Google Scholar 

Download references

Acknowledgements

The first author is funded by the National Council of Humanities, Sciences and Technologies (CONAHCyT), through a postdoctoral scholarship at the Artificial Intelligence Research Institute of the University of Veracruz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana-Laura López-Lobato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Lobato, AL., Acosta-Mesa, HG., Mezura-Montes, E. (2024). Blood Cell Image Segmentation Using Convolutional Decision Trees and Differential Evolution. In: Calvo, H., Martínez-Villaseñor, L., Ponce, H., Zatarain Cabada, R., Montes Rivera, M., Mezura-Montes, E. (eds) Advances in Computational Intelligence. MICAI 2023 International Workshops. MICAI 2023. Lecture Notes in Computer Science(), vol 14502. Springer, Cham. https://doi.org/10.1007/978-3-031-51940-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51940-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51939-0

  • Online ISBN: 978-3-031-51940-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics