Skip to main content

Flavor Ingredient Sustainability and Biotechnology

  • Chapter
  • First Online:
Flavor-Associated Applications in Health and Wellness Food Products
  • 120 Accesses

Abstract

Current flavor production methods (predominantly natural extraction and chemical synthesis) cannot be relied upon to meet the production needs of such a rapidly growing population. There is also an increasing consumer desire for natural food products. Natural products meet consumer quality expectations but are often prohibitively priced and unsustainable due to agriculture variations and damaging farming practices. Chemically synthesized flavor ingredients are cheap, but they do not meet consumer expectations due to their use of non-renewable resources and potential environmental pollution. Flavor biotechnology, or using whole or partial living organisms to create flavor ingredients, is a promising alternative to natural extraction and chemical synthesis; it offers product isomer specificity, cost advantages, and lower environmental pollution. In fact, the biotech flavors could be labeled natural in both the EU and United States. Flavor biotechnology research is growing in popularity in the following areas: using intact microbial cells to produce flavor chemicals or using isolated enzymes, whole plants, plant cells and tissue cultures, thermal processes, agro-industrial waste, or algae for flavor production. Enzymatic or microbial biotechnology methods have been adopted to produce more than 100 commercial flavor molecules. Even so, there is much to be learned involving cell and metabolic pathways in addition to solutions for feasibility issues like product cytotoxicity and difficult downstream purification. In the future, there will likely be advances in bio-aroma technology, knowledge, interest, and cost-competitiveness, leading to an overall increased market share.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henchion M, Hayes M, Mullen AM, Fenelon M, Tiwari B. Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods. 2017;6(7):53.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mortzfeld FB, Hashem C, Vranková K, Winkler M, Rudroff F. Pyrazines: synthesis and industrial application of these valuable flavor and fragrance compounds. Biotechnol J. 2020;15(11):2000064.

    Article  CAS  Google Scholar 

  3. Berger RG. Flavours and fragrances: chemistry, bioprocessing and sustainability. Springer Science & Business Media; 2007.

    Book  Google Scholar 

  4. Giovannoni E, Fabietti G. What is sustainability? A review of the concept and its applications. Integrated reporting: Concepts and cases that redefine corporate accountability; 2013. p. 21–40.

    Google Scholar 

  5. Kuhlman T, Farrington J. What is sustainability? Sustainability. 2010;2(11):3436–48.

    Article  Google Scholar 

  6. Brenna E, Fuganti C, Gatti FG, Serra S. Biocatalytic methods for the synthesis of enantioenriched odor active compounds. Chem Rev. 2011;111(7):4036–72.

    Article  CAS  PubMed  Google Scholar 

  7. Hansen AS, Frandsen HL, Fromberg A. Authenticity of raspberry flavor in food products using SPME-chiral-GC-MS. Food Sci Nutr. 2016;4(3):348–54.

    Article  CAS  PubMed  Google Scholar 

  8. Tian Y, Xu Z, Liu Z, et al. Botanical discrimination and classification of mentha plants applying two-chiral column tandem GC–MS analysis of eight menthol enantiomers. Food Res Int. 2022;162:112035. https://www.sciencedirect.com/science/article/pii/S0963996922010936. https://doi.org/10.1016/j.foodres.2022.112035.

    Article  CAS  PubMed  Google Scholar 

  9. Langen J, Wegmann-Herr P, Schmarr H. Quantitative determination of α-ionone, β-ionone, and β-damascenone and enantiodifferentiation of α-ionone in wine for authenticity control using multidimensional gas chromatography with tandem mass spectrometric detection. Anal Bioanal Chem. 2016;408(23):6483–96.

    Article  CAS  PubMed  Google Scholar 

  10. Maróstica MR Jr, Pastore GM. In: Berger RG, editor. Tropical fruit flavour. Flavours and Fragrances Chemistry, Bioprocessing and Sustainability. Berlin, Heidelberg: Springer-Verlag; 2007. p. 189–200.

    Chapter  Google Scholar 

  11. Gallage NJ, Møller BL. Vanillin–Bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol Plant. 2015;8(1):40–57. https://www.sciencedirect.com/science/article/pii/S1674205214000094. https://doi.org/10.1016/j.molp.2014.11.008.

    Article  CAS  PubMed  Google Scholar 

  12. de Oliveira FL, de Oliveira AM, Bicas JL. Bioaromas–perspectives for sustainable development. Trends Food Sci Technol. 2017;62:141–53.

    Article  Google Scholar 

  13. Ben Akacha N, Gargouri M. Microbial and enzymatic technologies used for the production of natural aroma compounds: synthesis, recovery modeling, and bioprocesses. Food Bioprod Process. 2015;94:675–706. https://www.sciencedirect.com/science/article/pii/S0960308514001199. https://doi.org/10.1016/j.fbp.2014.09.011.

    Article  CAS  Google Scholar 

  14. Amanda Gomes Almeida SÁ, de Meneses AC, de Araújo PHH, de Oliveira D. A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends Food Sci Technol. 2017;69:95–105.

    Article  Google Scholar 

  15. Román S, Sánchez-Siles LM, Siegrist M. The importance of food naturalness for consumers: results of a systematic review. Trends Food Sci Technol. 2017;67:44–57. https://www.sciencedirect.com/science/article/pii/S092422441730122X. https://doi.org/10.1016/j.tifs.2017.06.010.

    Article  CAS  Google Scholar 

  16. Devcich DA, Pedersen IK, Petrie KJ. You eat what you are: modern health worries and the acceptance of natural and synthetic additives in functional foods. Appetite. 2007;48(3):333–7.

    Article  PubMed  Google Scholar 

  17. Lunardo R, Saintives C. The effect of naturalness claims on perceptions of food product naturalness in the point of purchase. J Retail Consum Serv. 2013;20(6):529–37. https://www.sciencedirect.com/science/article/pii/S0969698913000635. https://doi.org/10.1016/j.jretconser.2013.05.006.

    Article  Google Scholar 

  18. Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008;54(4):712–32.

    Article  CAS  PubMed  Google Scholar 

  19. Bicas JL, Silva JC, Dionísio AP, Pastore GM. Biotechnological production of bioflavors and functional sugars. Food Science and Technology. 2010;30:7.

    Article  Google Scholar 

  20. Mackenzie A. Betting on biotech: An exploration of the trends and technologies driving the F&F biotech ingredients industry. Perfumer & Flavorist: The Resource for Sensory & Wellness Innovation; 2020. Rimensnyder Jenna, 45. https://www.perfumerflavorist.com/flavor/ingredients/article/21857389/betting-on-biotech

    Google Scholar 

  21. Müller DA. Flavours: the legal framework. Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability; 2007. p. 15–24.

    Google Scholar 

  22. Serra S, Fuganti C, Brenna E. Biocatalytic preparation of natural flavours and fragrances. Trends Biotechnol. 2005;23(4):193–8. https://www.sciencedirect.com/science/article/pii/S0167779905000491. https://doi.org/10.1016/j.tibtech.2005.02.003.

    Article  CAS  PubMed  Google Scholar 

  23. van der Schaft PH. Chemical conversions of natural precursors. Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability; 2007. p. 285–301.

    Google Scholar 

  24. Sun L, Xin F, Alper HS. Bio-synthesis of food additives and colorants-a growing trend in future food. Biotechnol Adv. 2021;47:107694. https://www.sciencedirect.com/science/article/pii/S0734975020301968. https://doi.org/10.1016/j.biotechadv.2020.107694.

    Article  CAS  PubMed  Google Scholar 

  25. Keasling JD. Synthetic biology and the development of tools for metabolic engineering. Metab Eng. 2012;14(3):189–95. https://www.sciencedirect.com/science/article/pii/S1096717612000055. https://doi.org/10.1016/j.ymben.2012.01.004.

    Article  CAS  PubMed  Google Scholar 

  26. Plocek T. Turpentine: A global perspective. Perfum Flavor. 1998;23:1–8.

    CAS  Google Scholar 

  27. Lee AY, Kim HS, Choi G, Moon BC, Chun JM, Kim HK. Optimization of ultrasonic-assisted extraction of active compounds from the fruit of star anise by using response surface methodology. Food Anal Methods. 2014;7:1661–70.

    Article  Google Scholar 

  28. Menzel M, Schreier P. Enzymes and flavour biotechnology. Flavours and Fragrances: Chemistry Bioprocessing and Sustainability; 2007. p. 489–505.

    Google Scholar 

  29. Bel-Rhlid R, Berger RG, Blank I. Bio-mediated generation of food flavors–towards sustainable flavor production inspired by nature. Trends Food Sci Technol. 2018;78:134–43.

    Article  CAS  Google Scholar 

  30. Almeida FLC, Castro MPJ, Travália BM, Forte MBS. Trends in lipase immobilization: bibliometric review and patent analysis. Process Biochem. 2021;110:37–51.

    Article  CAS  Google Scholar 

  31. Németh ÁS, Márczy JS, Samu Z, Háger-Veress Á, Szajáni B. Biocatalytic production of 2(E)-hexenal from hydrolysed linseed oil. Enzym Microb Technol. 2004;34(7):667–72. https://www.sciencedirect.com/science/article/pii/S0141022904000638. https://doi.org/10.1016/j.enzmictec.2004.03.003.

    Article  CAS  Google Scholar 

  32. Pogorzelski E, Wilkowska A. Flavour enhancement through the enzymatic hydrolysis of glycosidic aroma precursors in juices and wine beverages: a review. Flavour Fragrance J. 2007;22(4):251–4.

    Article  CAS  Google Scholar 

  33. Li X, Zheng Q, Yin J, Liu W, Gao S. Chemo-enzymatic synthesis of equisetin. Chem Commun. 2017;53(34):4695–7.

    Article  CAS  Google Scholar 

  34. Xu J, Green AP, Turner NJ. Chemo-enzymatic synthesis of pyrazines and pyrroles. Angew Chem Int Ed. 2018;57(51):16760–3.

    Article  CAS  Google Scholar 

  35. Manina AS, Forlani F. Biotechnologies in perfume manufacturing: metabolic engineering of terpenoid biosynthesis. Int J Mol Sci. 2023;24(9):7874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharon-Asa L, Shalit M, Frydman A, et al. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene. Plant J. 2003;36(5):664–74.

    Article  CAS  PubMed  Google Scholar 

  37. Guo W, Sheng J, Feng X. Mini-review: In vitro metabolic engineering for biomanufacturing of high-value products. Comput Struct Biotechnol J. 2017;15:161–7. https://www.sciencedirect.com/science/article/pii/S2001037016300964. https://doi.org/10.1016/j.csbj.2017.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karim AS, Jewett MC. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metab Eng. 2016;36:116–26. https://www.sciencedirect.com/science/article/pii/S1096717616300015. https://doi.org/10.1016/j.ymben.2016.03.002.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao L, Zhang Y, Venkitasamy C, et al. Preparation of umami octopeptide with recombined escherichia coli: feasibility and challenges. Bioengineered. 2018;9(1):166–9.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Wei X, Lu Z, et al. Optimization of culturing conditions of recombined escherichia coli to produce umami octopeptide-containing protein. Food Chem. 2017;227:78–84. https://www.sciencedirect.com/science/article/pii/S0308814617301073. https://doi.org/10.1016/j.foodchem.2017.01.096.

    Article  CAS  PubMed  Google Scholar 

  41. da Veiga M, Moreira I, de Figueiredo VL, da Cruz Pedroso Miguel MG, Santos C, Lima N, Freitas Schwan R. Impact of a microbial cocktail used as a starter culture on cocoa fermentation and chocolate flavor. Molecules. 2017;22(5):766.

    Article  Google Scholar 

  42. Berger RG. Biotechnology of flavours—the next generation. Biotechnol Lett. 2009;31:1651–9.

    Article  CAS  PubMed  Google Scholar 

  43. Da Porto C, Decorti D. Ultrasound-assisted extraction coupled with under vacuum distillation of flavour compounds from spearmint (carvone-rich) plants: comparison with conventional hydrodistillation. Ultrason Sonochem. 2009;16(6):795–9. https://www.sciencedirect.com/science/article/pii/S1350417709000480. https://doi.org/10.1016/j.ultsonch.2009.03.010.

    Article  CAS  PubMed  Google Scholar 

  44. Duetz WA, Fjällman AH, Ren S, Jourdat C, Witholt B. Biotransformation of D-limonene to ( ) trans-carveol by toluene-grown rhodococcus opacus PWD4 cells. Appl Environ Microbiol. 2001;67(6):2829–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cao C, Cao X, Yu W, et al. Global metabolic rewiring of yeast enables overproduction of sesquiterpene ( )-valencene. J Agric Food Chem. 2022;70(23):7180–7.

    Article  CAS  PubMed  Google Scholar 

  46. López J, Essus K, Kim I, et al. Production of β-ionone by combined expression of carotenogenic and plant CCD1 genes in saccharomyces cerevisiae. Microb Cell Factories. 2015;14:1–13.

    Article  Google Scholar 

  47. Buchhaupt M, Guder JC, Etschmann MMW, Schrader J. Synthesis of green note aroma compounds by biotransformation of fatty acids using yeast cells coexpressing lipoxygenase and hydroperoxide lyase. Appl Microbiol Biotechnol. 2012;93:159–68.

    Article  PubMed  Google Scholar 

  48. Rentería-Martínez O, Páez-Lerma JB, Rojas-Contreras JA, López-Miranda J, Martell-Nevárez MA, Soto-Cruz NO. Enhancing isoamyl acetate biosynthesis by pichia fermentans. Rev Mex Ing Quím. 2021;20(2):621–33.

    Article  Google Scholar 

  49. Effenberger I, Hoffmann T, Jonczyk R, Schwab W. Novel biotechnological glucosylation of high-impact aroma chemicals, 3 (2H)-and 2 (5H)-furanones. Sci Rep. 2019;9(1):10943.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Klee HJ. Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytol. 2010;187(1):44–56.

    Article  CAS  PubMed  Google Scholar 

  51. Lavy M, Zuker A, Lewinsohn E, et al. Linalool and linalool oxide production in transgenic carnation flowers expressing the clarkia breweri linalool synthase gene. Mol Breed. 2002;9:103–11.

    Article  CAS  Google Scholar 

  52. Shewry PR, Jones HD, Halford NG. Plant biotechnology: Transgenic crops. Food Biotechnol; 2008. p. 149–86.

    Google Scholar 

  53. Di R, Kim J, Martin MN, et al. Enhancement of the primary flavor compound methional in potato by increasing the level of soluble methionine. J Agric Food Chem. 2003;51(19):5695–702.

    Article  CAS  PubMed  Google Scholar 

  54. Scragg AH. The production of flavours by plant cell cultures. In: Flavours and fragrances: Chemistry, bioprocessing and sustainability. Springer; 2007. p. 599–614.

    Chapter  Google Scholar 

  55. Dörnenburg H, Knorr D. Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzym Microb Technol. 1995;17(8):674–84. https://www.sciencedirect.com/science/article/pii/0141022994001084. https://doi.org/10.1016/0141-0229(94)00108-4.

    Article  Google Scholar 

  56. Lotfy SN, Fadel HHM, El-Ghorab AH, Shaheen MS. Stability of encapsulated beef-like flavourings prepared from enzymatically hydrolysed mushroom proteins with other precursors under conventional and microwave heating. Food Chem. 2015;187:7–13. https://www.sciencedirect.com/science/article/pii/S0308814615005737. https://doi.org/10.1016/j.foodchem.2015.04.027.

    Article  CAS  PubMed  Google Scholar 

  57. Oliveira HSS, Mamede MEO, Góes-Neto A, Koblitz MGB. Improving chocolate flavor in poor-quality cocoa almonds by enzymatic treatment. J Food Sci. 2011;76(5):C755–9.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Q, Lu Y, Zhou X, Wang X, Zhu J. Effect of different vegetable wastes on the performance of volatile fatty acids production by anaerobic fermentation. Sci Total Environ. 2020;748:142390.

    Article  CAS  PubMed  Google Scholar 

  59. Omarini A, Dambolena JS, Lucini E, Jaramillo Mejía S, Albertó E, Zygadlo JA. Biotransformation of 1, 8-cineole by solid-state fermentation of eucalyptus waste from the essential oil industry using Pleurotus ostreatus and Favolus tenuiculus. Folia Microbiol (Praha). 2016;61:149–57.

    Article  CAS  PubMed  Google Scholar 

  60. Muzaifa M, Safriani N, Zakaria F. Production of protein hydrolysates from fish by-product prepared by enzymatic hydrolysis. Aquac Aquar Conserv Legis. 2012;5(1):36–9.

    Google Scholar 

  61. Francezon N, Tremblay A, Mouget J, Pasetto P, Beaulieu L. Algae as a source of natural flavors in innovative foods. J Agric Food Chem. 2021;69(40):11753–72.

    Article  CAS  PubMed  Google Scholar 

  62. Warmling BR, Chiarello LM, Botton V, Gonçalves MJ, Costa JAV, De Carvalho LF. Bioaromas from microalgae spirulina sp. by ethylic esterification reactions. Biochem Eng J. 2022;186:108542.

    Article  CAS  Google Scholar 

  63. Isleten Hosoglu M. Aroma characterization of five microalgae species using solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry. Food Chem. 2018;240:1210–8. https://www.sciencedirect.com/science/article/pii/S0308814617313882. https://doi.org/10.1016/j.foodchem.2017.08.052.

    Article  CAS  PubMed  Google Scholar 

  64. Silva HLA, Balthazar CF, Silva R, et al. Sodium reduction and flavor enhancer addition in probiotic Prato cheese: contributions of quantitative descriptive analysis and temporal dominance of sensations for sensory profiling. J Dairy Sci. 2018;101(10):8837–46. https://www.sciencedirect.com/science/article/pii/S0022030218306957. https://doi.org/10.3168/jds.2018-14819.

    Article  CAS  PubMed  Google Scholar 

  65. Schrader J. Microbial flavour production. Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability; 2007. p. 507–66.

    Google Scholar 

  66. Sutay Kocabaş D, Lyne J, Ustunol Z. Hydrolytic enzymes in the dairy industry: applications, market and future perspectives. Trends Food Sci Technol. 2022;119:467–75. https://www.sciencedirect.com/science/article/pii/S0924224421006701. https://doi.org/10.1016/j.tifs.2021.12.013.

    Article  CAS  Google Scholar 

  67. Feng L, Qiao Y, Zou Y, Huang M, Kang Z, Zhou G. Effect of flavourzyme on proteolysis, antioxidant capacity and sensory attributes of Chinese sausage. Meat Sci. 2014;98(1):34–40. https://www.sciencedirect.com/science/article/pii/S030917401400103X. https://doi.org/10.1016/j.meatsci.2014.04.001.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang W, Shi K, Han Y, et al. Characterization of Pleurotus citrinopileatus hydrolysates obtained from Actinomucor elegans proteases compared with that by commercial proteases. J Food Sci. 2022;87(9):3737–51.

    Article  CAS  PubMed  Google Scholar 

  69. Tavano OL, Berenguer-Murcia A, Secundo F, Fernandez-Lafuente R. Biotechnological applications of proteases in food technology. Compr Rev Food Sci Food Saf. 2018;17(2):412–36.

    Article  PubMed  Google Scholar 

  70. Volken de Souza CF, Guimarães Venzke J, Hickmann Flôres S, Záchia Ayub MA. Enzymatic properties of transglutaminase produced by a new strain of bacillus circulans BL32 and its action over food proteins. LWT Food Sci Technol. 2011;44(2):443–50. https://www.sciencedirect.com/science/article/pii/S0023643810002938. https://doi.org/10.1016/j.lwt.2010.08.015.

    Article  CAS  Google Scholar 

  71. Martins AB, Graebin NG, Lorenzoni ASG, Fernandez-Lafuente R, Ayub MAZ, Rodrigues RC. Rapid and high yields of synthesis of butyl acetate catalyzed by novozym 435: reaction optimization by response surface methodology. Process Biochem. 2011;46(12):2311–6. https://www.sciencedirect.com/science/article/pii/S1359511311003217. https://doi.org/10.1016/j.procbio.2011.09.011.

    Article  CAS  Google Scholar 

  72. Ciriminna R, Meneguzzo F, Delisi R, Pagliaro M. Citric acid: emerging applications of key biotechnology industrial product. Chem Cent J. 2017;11(1):1–9.

    Article  Google Scholar 

  73. Demain AL. Small bugs, big business: the economic power of the microbe. Biotechnol Adv. 2000;18(6):499–514. https://www.sciencedirect.com/science/article/pii/S0734975000000495. https://doi.org/10.1016/S0734-9750(00)00049-5.

    Article  CAS  PubMed  Google Scholar 

  74. Groenewald M, Boekhout T, Neuvéglise C, Gaillardin C, van Dijck PW, Wyss M. Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol. 2014;40(3):187–206.

    Article  CAS  PubMed  Google Scholar 

  75. Swamy MK, Sinniah UR. Patchouli (Pogostemon cablin benth.): botany, agrotechnology and biotechnological aspects. Ind Crop Prod. 2016;87:161–76.

    Article  CAS  Google Scholar 

  76. Phengnuam T, Suntornsuk W. Detoxification and anti-nutrients reduction of jatropha curcas seed cake by bacillus fermentation. J Biosci Bioeng. 2013;115(2):168–72. https://www.sciencedirect.com/science/article/pii/S138917231200360X. https://doi.org/10.1016/j.jbiosc.2012.08.017.

    Article  CAS  PubMed  Google Scholar 

  77. Gounaris Y. Biotechnology for the production of essential oils, flavours and volatile isolates. A review. Flavour Fragrance J. 2010;25(5):367–86.

    Article  CAS  Google Scholar 

  78. Lawson CE, Martí JM, Radivojevic T, et al. Machine learning for metabolic engineering: a review. Metab Eng. 2021;63:34–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofen Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davila, M., Du, X. (2024). Flavor Ingredient Sustainability and Biotechnology. In: Du, X., Yang, J. (eds) Flavor-Associated Applications in Health and Wellness Food Products . Springer, Cham. https://doi.org/10.1007/978-3-031-51808-9_5

Download citation

Publish with us

Policies and ethics