Skip to main content

Design and Evaluation of Graphene Oxide/Collagen Scaffolds for Application in Tissue Engineering

  • Conference paper
  • First Online:
Advances in Bioengineering and Clinical Engineering (SABI 2022)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 105))

Included in the following conference series:

  • 40 Accesses

Abstract

Tissue engineering is intended for the reconstruction of lost tissue due to destructive diseases such as inflammation and tumors, and requires three major elements: cells, signalling molecules and scaffolds. A scaffold is an extracellular artificial matrix with three dimensions; it is highly porous, 3D printed, and able to host and guide cells in their growth and in tissue regeneration. Currently, collagen hydrogels are the most popular material for cellular scaffolds, used successfully in clinical practice. Graphene oxide, graphene´s precursor in its synthesis, is a graphite oxide monolayer; even though the study of its properties for tissue engineering is still in its early stages, big results are expected. The project aims at designing, 3D printing and evaluating the features of collagen and graphene oxide scaffolds, for potential applications in tissue engineering. The ink obtained from these materials allowed loyal printings, respecting structures and dimensions. The incorporation of graphene oxide in collagen scaffolds showed variations in their properties, keeping swelling ratio, decreasing porosity and solubility. Using a scanning electron microscope (SEM), we distinguished pure graphene oxide from collagen in the scaffold, where we observed the combination of both materials in micro-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, G., Ushida, T., Tateishi, T.: Scaffold design for tissue engineering. Macromol.Biosci. (2002).https://doi.org/10.1002/1616-5195(200220201)

  2. Yang, S., Leong, K.F., Du, Z., Chua, C.K.: The design of scaffolds for use in tissue engineering: part I. traditional factors. Tissue Eng. 7(6), 679–689 (2001). https://doi.org/10.1089/107632701753337645

    Article  Google Scholar 

  3. Osidak, E.O., Kozhukhov, V.I., Osidak, M.S., Domogatsky, S.P.: Collagen asbioink for bioprinting: a comprehensive review. Int. J. Bioprint. 6(3), 1–10.https://doi.org/10.18063/IJB.V6I3.270

  4. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nanosci. Technol. Collect. Rev. Nat. J. 11–19 (2009). https://doi.org/10.1142/9789814287005_0002

  5. Chen, D., Feng, H., Li, J.: Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112(11):6027–6053 (2012). https://doi.org/10.1021/cr300115g

  6. Cheng, Z., et al.: Potential use of 3D-printed graphene oxide scaffold for construction of the cartilage layer. J. Nanobiotechnol. 18(1), 1–13 (2020). https://doi.org/10.1186/s12951-020-00655-w

    Article  Google Scholar 

  7. Nocera, D.A.: Collagen obtaining for 3D printing to create biological substitutes for biomedical applications. 22(2) (2018)

    Google Scholar 

  8. Qian, L., Zhang, H.: Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. J. Chem. Technol. Biotechnol. 86(2), 172–184 (2011). https://doi.org/10.1002/jctb.2495

    Article  Google Scholar 

  9. Ma, L., Gao, C., Mao, Z., Zhou, J., Shen, J.: Biodegradability and cell-mediated contraction of porous collagen scaffolds: the effect of lysine as a novel crosslinking bridge. J. Biomed. Mater. Res. Part A 71(2), 334–342 (2004). https://doi.org/10.1002/jbm.a.30170

    Article  Google Scholar 

  10. Profile, S.E.E., Profile, S.E.E.: The critical point drying (CPD) as applied technique in the preparation of poly (acrylamide-co-acrylic acid) gels through scanning electron microscopy (2012)

    Google Scholar 

  11. “Processing and characterization of chitosan_PVA and methylcellulose porous scaffolds for tissue engineering _ Elsevier Enhanced Reader.pdf.”

    Google Scholar 

  12. Soluci, L., Amortiguada, S., Pbs, E., Clorh, A., Biol, S.: Preparación de phosphate buffered saline (PBS). Facultad de Medicina UASLP 9–10 (2008). http://www.genomica.uaslp.mx/Protocolos/Cell_Buffer_PBS.pdf

  13. Rubin, M., Marti, A.: Proyecto Integrador Desarrollo y caracterización a nivel mecánico, químico y biológico de una tinta a base de un hidrogel comercial, con la inclusión de diversas concentraciones de nanotubos de carbono (2021)

    Google Scholar 

  14. Raslan, A., Saenz del Burgo, L., Ciriza, J., Luis Pedraz, J.: Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int. J. Pharm. 580 (2020). https://doi.org/10.1016/j.ijpharm.2020.119226

  15. Barezzi, F., Gonzalvez, M.: Caracterización física y biológica de andamios impresos 3D de colágeno obtenidos a partir de piel porcina para uso biomédico. 125 (2018)

    Google Scholar 

  16. Bavaresco Elissetche, B.: Entrecruzamiento por tratamiento dehidrotermal de andamios de colágeno y ácido hialurónico impresos en 3D. 61 (2017)

    Google Scholar 

  17. Nocera, A.D., Comín, R., Salvatierra, N.A., Cid, M.P.: Development of 3D printed fibrillar collagen scaffold for tissue engineering. Biomed. Microdev. 20(2), 1–13 (2018). https://doi.org/10.1007/s10544-018-0270-z

    Article  Google Scholar 

  18. Liu, S. et al.: Biocompatible graphene oxide–collagen composite aerogel for enhanced stiffness and in situ bone regeneration. Mater. Sci. Eng. C 105, 110137 (2019). https://doi.org/10.1016/j.msec.2019.110137

Download references

Acknowledgements

The authors acknowledge the contribution of IIByT (CONICET-UNC), Departamento de Química Orgánica y Biológica (FCEFyN-UNC), Departamento de Química (FCEFQyN-UNRC), Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (FCQ-UNC), and LAMARX (FAMAF-UNC) to carry out this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Paula Cid .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cáceres, M.V., Fernández, P.A., Morales, G., Salvatierra, N.A., Comín, R., Cid, M.P. (2024). Design and Evaluation of Graphene Oxide/Collagen Scaffolds for Application in Tissue Engineering. In: Lopez, N.M., Tello, E. (eds) Advances in Bioengineering and Clinical Engineering. SABI 2022. IFMBE Proceedings, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-031-51723-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51723-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51722-8

  • Online ISBN: 978-3-031-51723-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics